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Cirera and German Rigau Claramunt
zuzendaritzapean egindako tesiaren
txostena, Euskal Herriko Unibertsi-
tatean Informatikan Doktore titulua
eskuratzeko aurkeztua

Donostia, 2006ko ekaina





To my family





Abstract

Most of the different tasks included in Natural Language Processing (nlp) (such as,
Word Sense Disambiguation, Information Retrieval, Information Extraction, Ques-
tion Answering, Information Filtering, Natural Language Interfaces, Story Under-
standing or Machine Translation) apply different levels of Natural Language Under-
standing (nlu).

This thesis explores a new integrated architecture for robust nlu, exploiting
constraint-based optimization techniques. The goal of this work is to find robust
and flexible architectures able to deal with the complexity of advanced nlp.

In particular, we present a novel architecture (pardon), orthogonal to the tra-
ditional nlp task decomposition, which applies any kind of knowledge (syntactic,
semantic, linguistic, statistical) at the earliest opportunity while retaining an inde-
pendent representation of the different kinds of knowledge.

The different architectures proposed for nlu can be classified based on two main
dimensions, namely, the level of integration of their processes and the level of inte-
gration of their data.

An easier modularization aimed at focusing on a particular nlp task and compe-
titions (e.g. MUC, TREC, etc) have lead most of the researchers to adopt a pipelined
or stratified architecture. However, this architecture shows several drawbacks which
has made us consider the use of integrated and interactive approaches. In order to
implement such approaches, we will also introduce the Consistent Labeling Prob-
lems (clps), a specific case of Constraint Satisfaction Problems that can be solved
efficiently by a set of iterative algorithms (e.g. relaxation labeling).

Constraints allow us to integrate both processes and knowledge in the same
framework. On the one hand, many forms of ambiguity can be represented in a
compact and elegant manner, and processed efficiently by means of constraints. On
the other hand, many nlp processes (e.g., many wsd techniques) could also be
represented as constraints.

Inside the pardon architecture, an object uses its models to combine itself with
other objects. During this combination, some of its attribute values are determined
(in a similar way to Hearst’s Polaroid Words [Hirst, 1987]). Roughly speaking, par-

don combines objects from one level in order to build the objects corresponding
to the next level of the task under consideration. This combination is carried out
by using lexicalized models. That is, these models must be anchored-in/trigged-
by a first-level object. pardon represents the relationships between objects in a
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dependency-like style, with models and roles. In order to avoid the combinatorial
explosion of possible object combinations, this framework is formalized as a Consis-
tent Labeling Problem (clp). Thus, it can be solved using optimization methods
(e.g. the relaxation labeling algorithm) to find the most consistent solution.

pardon aims to give a general framework, that is multilingual and open domain,
in which different nlp tasks can be easily formalized. These different tasks can be
tested separately or carried out simultaneously following an integrated approach.

Pursuing this goal, we have also integrated several resources in a multilingual
knowledge base, named Multilingual Central Repository (mcr). mcr has been built
around WordNet, using the EuroWordNet architecture. This multilingual repository
integrates different resources, ontologies (sumo, Top Concept Ontology), thematic
classifications (Domains), local wordnets of five different languages, and so on.

The new architecture proposed by pardon has been successfully applied to
two different nlu tasks involved in Semantic Interpretation, namely Semantic Role
Labeling (srl)and Word Sense Disambiguation (wsd).

Usually, Word Sense Disambiguation and Semantic Role Labeling are considered
separately although they are strongly related. wsd can improve results in srl (as
different senses have different syntactic behaviours, specially verbs) and vice-versa
(e.g. using verbal preferences for wsd).



Acknowlegements / Agräıments / Esker onak
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CHAPTER I.

Introduction

A child of five would understand this. Send someone to fetch a child of five.

Groucho Marx

An English professor wrote the words,“Woman without her man is nothing”
on the blackboard and directed his students to punctuate it correctly.

The men wrote: “Woman, without her man, is nothing.”

The women wrote: “Woman: Without her, man is nothing.”

Unknown

I.1 Towards Natural Language Understanding

There is no doubt about the complexity of any human language, and the inherent dif-
ficulty of its automatic understanding. A single comma can change the meaning of a
sentence completely (e.g. “eats shoots and leaves” versus “eats, shoots and leaves”1)
or even worst, make it mean right the opposite (“Don’t stop” versus “Don’t, stop”).
The aim of this work is to explore new natural language processing architectures
that are as robust and flexible as possible.

Most of the different tasks included in Natural Language Processing (nlp), such
as Word Sense Disambiguation (wsd), Information Retrieval (IR), Information Ex-
traction (IE), Question Answering (QA), Information Filtering, Natural Language
Interfaces, Story Understanding [Riloff, 1999] or Machine Translation (MT), apply
different levels of Natural Language Understanding (nlu). For instance, in the case
of Information Extraction and Question Answering, the Natural Language Under-
standing component plays a major role. This is due to the fact that most of the

1The example is borrowed from the title of a U.S. bestseller about punctuation
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information to be extracted can only be identified by recognising all the conceptual
components and the roles these components play.

I.1.1 Semantic Interpretation

An important step in any process that implies Natural Language Understanding is
Semantic Interpretation. Semantic Interpretation can be defined as the process of
obtaining a suitable representation for the meaning of a text [Brill and Mooney,
1997]. The input of the Semantic Interpreter can vary significantly, going from raw
text to full parse trees. Likewise, the output of the Semantic Interpreter can also vary
considerably (logical formulae, case-frames, SQL, Text Meaning Representation),
mostly influenced by the type of application.

Multiple knowledge representations and formalisms for Semantic Interpretation
have been developed. Mainly, they can be divided into Knowledge structures and
Logical representations. Knowledge structures are widely used in the AI community,
for example, frames, scripts or semantic nets [Woods, 1985]. Logical representations
are unambiguous formal languages with well-defined rules of interpretation and in-
ference. Generally, nlp tasks require high-order logics with modalities, which are
either extensions of predicate logics to treat phenomena like fuzziness, believes, mo-
del operators, temporal reasoning, etc or adaptation of logics to nlp. Some examples
of the former are Intentional Logics (possible worlds semantics), Episodic Logic (e.g.
TRAINS [Poesio et al., 1994]), Description Logics (e.g. see [Franconi, 2002]). For an
example of the later we can refer to Gate [Cunningham et al., 1996] which uses an
under-specified semantic representation, named Quasi Logical Form [Alshawi, 1990],
[Alshawi, 1992], [Alshawi et al., 1992]. Figure I.1 shows some examples of possible
representations for the sentence The cat eats fish.

There also exist more complex formalisms to represent semantics beyond the sen-
tence level, e.g. Discourse Representation Theory [Kamp and Reyle, 1993] (DRT).
DRT is a powerful method for semantic representation that attempts to bridge the
gap between syntax and semantics, which are probably two of the most important
areas of research within Natural Language Processing. DRT is an overall theory of
discourse representation, and it is associated with Discourse Representation Struc-
tures (DRSs), where formal objects realise the dynamic notion of the meaning in
discourse. DRSs provide logical language-like features to DRT.

In order to obtain a representation of a context-independent meaning of a sen-
tence, two important sub-tasks can be distinguished within Semantic Interpretation:
Word Sense Disambiguation (wsd) and Semantic Role Labeling (srl). Usually wsd

and srl are considered separately although they are strongly related. wsd can im-
prove results in srl (as different senses have different syntactic behaviours (specially
verbs) and vice-versa (e.g. using selectional preferences to wsd [Carroll and Mc-
Carthy, 2000]).

Semantic Role Labeling (srl) consists in the production of a case-role analysis
in which the semantic roles2 of the entities, such as Starter or Entity, are identified
[Brill and Mooney, 1997].

2Also called thematic roles.
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b) Logical representations
• ∃x , y cat(x) ∧ fish(y) ∧ eat(x, y)
• ∃x , y cat(x) ∧ fish(y) ∧ eat(e, x, y)
• ∃x , y cat(x) ∧ fish(y) ∧ eat(e) ∧ Agent(e, x ) ∧ Patient(e, y)
• λx ( λy ( eat(x , y), fish(y) ), cat(x) )

Figure I.1: Example of different semantic representations for “The cat eats fish”

El gato come pescado
The cat eats fish
Starter Entity

Figure I.2: Example of semantic roles.

Even for a simple sentence as the one shown in figure I.2 (The cat eats fish), ob-
taining a semantic representation is not an easy task. Different Knowledge and Pro-
cesses must be applied to the sentence in order to identify the semantic roles. Gen-
erally semantic analysis is not directly approached. First, several processes are per-
formed on the sentence, for instance: dividing the sentence into words (/the/ /cat/
/eats/ /fish/ ), lemmatizing and Part of Speech tagging each word (/the the AT/
/cat cat NN1/ /eats eat VVZ/ /fish fish NN2/ ), semantically disambiguating the
content words (/the/ /cat#n#1/ /eat#v#3/ /fish#n#2/ ) or performing some level
of syntactic analysis (e.g. chunking: {The cat} NP {eats} VP {fish} NP).

I.2 NLU Open Issues and Current Challenges

Some of the previous processes or tasks mentioned in the previous section seem
to have reached an acceptable level of performance (e.g. lemmatization, PoS tag-
ging) for nlp applications. However, the results in Word Sense Disambiguation are
still around 70%, those for dependency parsing are about 75%, and performance is
slightly over 80% for correct bracketing. Furthermore, other tasks such as Multiword
Expressions are still an open issue.
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The difficulty of achieving nlu, and also the difficulty of evaluating the answers
of a nlu system (i.e. black box evaluation), led the nlp community to face and
evaluate these tasks independently. In the last decade, the nlp community has
focused on the evaluation of much simpler and well defined tasks, wsd (Senseval),
parsing (PARSEVAL), IE (MUCs) and IR (TRECs and CLEFs), etc.

Works on IE3 organized by TIPSTER4 [Grishman, 1995; Yangarber and Grish-
man, 1998; Appelt et al., 1996] have shown the need for syntax-semantics interaction.
The MUC conferences showed the tendency of the Information Extraction Systems
to be less domain oriented [Wilks and Catizone, 1999] and also more language inde-
pendent [Humphreys et al., 1998] [Kilgarriff, 1997], making Information Extraction
stand closer to Natural Language Understanding5.

These tendencies are also present in the Pascal6 challenge (evaluating machine
learning for IE) and the initiatives of the American Automatic Content Extraction
program (ACE)7 whose aim is to develop extraction technology to support automatic
processing of language.

In 1999, the TREC competition included a Question Answering task for the first
time. Open-domain QA is a complex application that encompasses many aspects
of nlp and Ai, such as the use of ontologies, reasoning and inference engines. The
current state of the art QA systems can provide answers only to simple questions.
However, the complexity of QA systems is rapidly evolving and extending their
limits, for instance, to solve questions whose answer is distributed along several
documents, questions that need non trivial inferences, to become incremental or
dialog guided and so on.

In the frame of the Cross-Language Evaluation Forum (CLEF)8 multilinguality
is also addressed in IR/QA. The objective of CLEF is to develop and maintain
an infrastructure for the testing and evaluation of information retrieval systems for
European languages, in both monolingual and cross-lingual contexts.

In order to improve not only the performance in all these tasks but also the
general understanding capabilities of current nlp systems, the nlp community has
to face all the issues raised by these tasks, such as the integration of different knowl-
edge and the interaction of the different nlp processes, the need of ontologies and
reasoning capabilities or multilinguality. The work presented in this thesis focuses
on the integration of different types of knowledge and the interaction of the different
nlp processes, as well as addressing other issues such as the use of ontologies and
multilinguality.

The following subsections will be devoted to introducing some of these current
nlp issues: Knowledge and Processes interaction, the need of ontologies, reasoning
capabilities and multilinguality.

3IE was greatly promoted by the Message Understanding Conferences [MUC, 1991; MUC, 1992;
MUC, 1993; MUC, 1995; MUC, 1998]. See http://www.muc.saic.com/

4http://www.itl.nist.gov/iaui/894.02/related projects/tipster
5Currently, other related areas (such as Story Understanding) and Question Answering have

begun to adapt recent improvements from the Information Extraction field.
6Pattern Analysis, Statistical Modelling, and Computational Learning
7http://www.nist.gov/speech/tests/ace
8http://www.clef-campaign.org
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I.2.1 Knowledge and Processes interaction

There is not a well established consensus on which must be the components or
processes of a general nlu system. However, most of the nlp systems usually
involve several processes, such as tokenization, lemmatization, Part of Speech (PoS)
tagging, parsing or, at least, some level of syntactic analysis. At any stage, any
of the processors could bring up the vital piece of information to understand the
meaning of a sentence by means of its different knowledge resources. For instance,
identifying the subcategorization frame or the diathesis alternation of the verb,
using the semantic information associated to an event (e.g. Ingestor:Animal ingest
Ingested:Food) or applying a piece of world knowledge (e.g. “predators eat animals”)
could help to grasp the meaning of the whole sentence.

nlu systems need to use different types of knowledge to accomplish their task.
Allen [Allen, 1995] classifies the relevant knowledge for Natural Language Under-
standing into seven classes: Phonetic and phonological Knowledge (e.g. what the
pronunciation of the word cat is), Morphological Knowledge (e.g. the root of cats
is cat), Syntactic Knowledge (e.g. subcategorization frames, NP eat NP), Semantic
Knowledge (the meaning of a word, e.g. eat#v#1 is to take in solid food), Prag-
matic Knowledge (i.e. the use of sentences in different situations and how their use
affects interpretation), Discourse Knowledge (i.e. how immediately preceding sen-
tences affect the interpretation of the next sentence: pronouns, temporal aspects,
etc.), World Knowledge (e.g. cats are predators).

In order to successfully understand a text, different types of knowledge and prob-
ably different knowledge resources must be used together. The compatibility among
different knowledge resources is crucial to obtain a sound interpretation. The inte-
gration of different knowledge sources (information fusion [Menzel, 2002]) is an open
issue in many fields (ontologies, speech recognition, image recognition). Integration
of already acquired knowledge has multiple difficulties: whether the knowledge com-
ponents came from different data sources, the different knowledge components have
been developed based on completely different paradigms or the different components
have been designed to keep separate the representation of different knowledge (e.g.
to improve performance, portability). All these different types of knowledge could
become incomplete or even contradictory. The representation for hominids in dif-
ferent semantic classifications is a simple example of this incompatibility caused by
different levels of granularity and different ontological criteria. For instance, while
the Top Concept Ontology classifies them as Human, WordNet’s lexicographer files
assigned them to Animal and sumo defines its own category, Hominids. This incom-
pleteness and inconsistence of the knowledge become a real issue when nlu needs
to deal with ontologies and reasoning.
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I.2.2 The Need of Ontologies and Reasoning

Nowadays, there is a wide consensus that all nlp systems that seek to represent and
manipulate meanings of texts need an ontology and some reasoning capabilities.

Ontologies and reasoning are the touchstones to build open domain nlu systems.
Up to a few years ago, the major nlu efforts had focused on local domains (IE) or
centred their understanding components on pre-established types of tasks (QA).

Ontologies are becoming a crucial issue in nlp. A recent example is the so called
Ontological Semantics [Nirenburg and Raskin, 2004], a theory of meaning in
natural language which uses an ontology as the central resource for extracting and
representing meaning of natural language text, reasoning about knowledge derived
from text as well as generating natural language text based on representations of
their meaning.

I.2.3 A Multilingual World

Ontologies are also appealing for nlu due to their language independent nature.
Multilinguality is an open issue that nlp has to face. There are between 3,000
and 5,000 human languages but only about 600 of these languages have more than
100.000 native speakers. Although initially the nlp community had mainly focused
on English, in the past decades there has been an increasing interest for many other
languages (Basque, Catalan, French, German, Greek, Spanish, Turkish and so on).

The difficulty to handle multilinguality lies not only on the number of different
languages. It lies on the variety, the different behaviour, phenomena and richness of
each one of these human languages. The complexity of an nlp process could vary
remarkably depending on the language. For instance, in a free word order language,
such as Spanish, you can say “El gato come pescado” (the cat eats fish) but also,
“Pescado come el gato” (literally Fish eats the cat). The syntactic structure of both
sentences is almost the same, making more difficult to determine the semantic roles,
that is, to identify which the agent (the eater) and the patient (the thing being
eaten) are. On the other hand, for instance, the case marking used in other languages
(such as in Basque “katuak arraia jaten du”) could ease, in some sentences the
establishment of the semantic roles. Moreover, given a sentence, the complexity of
ambiguity resolution (wsd) could be completely different depending on the language,
for instance the word “cat” in Spanish has three main senses while it has only four
main senses in English. Multilinguality is a big challenge but it could also encourage
the nlp community to join efforts and results so as to better understand the nature
of the different human languages [Rigau et al., 2002].

Many semantic resources are now becoming multilingual (e.g. WordNet has
been extended to a multilingual architecture with EuroWordNet and now there are
wordnets for at least 37 languages) or have their equivalent in different languages,
such as, Bonnie Dorr’s LCS, SemCor (which has an Italian equivalent [Bentivogli et
al., 2005]) and recent initiatives like FrameNet (which has now a parallel project for
Spanish and Japanese).
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I.2.4 New Architectures for nlu

In order to face all these new challenges (that is, knowledge integration, the use of
ontologies, multilinguality, interaction of the different nlp processes, etc.), new nlp

architectures must be designed which are able to integrate all these different types
of knowledge and processes in a more robust and flexible manner.

Even though Allen’s classification of knowledge types is widely accepted, there
is no general agreement about how and when these different types of knowledge
should be used. The Integrated Processing Hypothesis [Birnbaum, 1989] states that
the language processor applies any kind of knowledge at the earliest opportunity.
However, most of the current nlp architectures use a sequential approach, where
knowledge is used locally in a pre-established order.

I.3 Goals of this Thesis

We will present a novel architecture (pardon), orthogonal to the traditional nlp

task decomposition and which applies any kind of knowledge (syntactic, seman-
tic, linguistic, statistical) at the earliest opportunity but retaining an independent
representation of the different kinds of knowledge.

pardon aims to give a general framework that is multilingual and open domain,
in which different nlp tasks can be easily formalized. These different tasks can be
tested separately or carried out simultaneously following an integrated approach.

We will try to be as neutral as possible in our representation of the meaning, al-
though our formalization stays closer to Frames used in AI or to Conceptual Graphs
[Sowa, 1976]. In a similar way to that of the Object Oriented paradigm in soft-
ware development, the knowledge representation of the different levels/stages inside
pardon are objects. Those objects, a-kind-of case-role representation, may have as-
sociated different models and attributes. An object uses its models to combine itself
with other objects, meanwhile during this combination process some of its attribute
values are determined (in a similar way to Hearst’s Polaroid Words [Hirst, 1987]).

Roughly speaking, pardon combines objects from one level in order to build
the objects corresponding to the next level of the task under consideration. This
combination is carried out using lexicalized models. That is, these models must
be anchored-in/trigged-by a first-level object. pardon represents the relationships
between objects in a dependency-like style, with models and roles. In order to avoid
the combinatorial explosion of possible combinations of objects, this framework is
formalized as a Consistent Labeling Problem (clp). Then, it can be solved us-
ing optimization methods (e.g. the relaxation labeling algorithm) to find the most
consistent solution.

We have successfully applied this new architecture to two nlu tasks, a) the
process of obtaining a representation of the meaning of a sentence without taking
its context into consideration (i.e. Semantic Role Labeling) and b) the selection of
the appropriate sense for a word (Word Sense Disambiguation).
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I.4 Contributions

The main contributions of this thesis are, on the one hand, to present a new ar-
chitecture that could be a new frame to study several nlp tasks and that uses
state-of-the-art optimization techniques. This architecture addresses some nlu cur-
rent issues, such as the integration of different types of knowledge and processes,
the use of ontologies, multilinguality and robustness in nlu. It also presents an
approach to nlu knowledge integration build around the de facto standard resource
(i.e. WordNet). On the other hand, the two chosen nlp tasks do not only show that
this architecture can be applied successfully but also that it could be a new model
for a general nlu architecture.

I.5 Overview

After this introduction, Chapter II will overview the different architectures existing
in nlp. The easier modularization and the trend to focus on a particular nlp task
and competition (e.g. MUC, TREC, etc.) have led most of the researchers to adopt
a pipelined or stratified architecture. However, this architecture shows several draw-
backs which have made us consider the use of integrated and interactive approaches.
In order to implement such approaches, we will also introduce the Consistent La-
beling Problems (clps), an specific case of Constraint Satisfaction Problems which
can be solved efficiently by a set of iterative algorithms (e.g. relaxation labeling).

Chapter III is devoted to Knowledge Integration and our approach to inte-
grate several resources in a multilingual knowledge base, named Multilingual Central
Repository (mcr). mcr has been built around WordNet, using the EuroWordNet
architecture. This multilingual repository integrates different resources, ontologies
(sumo, Top Concept Ontology), thematic classifications (Domains), local wordnets
for five different languages, etc.

Chapter IV is devoted to describing pardon’s architecture, a powerful frame-
work that takes advantage of Constraint Satisfaction techniques. pardon aims to
explore the limits of current nlp technology. That is, the main goal of pardon

is to provide a robust architecture to semantically process unrestricted text with-
out wrongly filtering partial solutions, or over-constraining the interaction between
modules and knowledge. We use the framework of Consistent Labeling Problem
(clp) (see section II.5) to integrate different nlp processes and to apply any kind
of knowledge (syntactic, semantic, linguistic, statistical) at the earliest opportunity,
while retaining an independent representation of the different kinds of knowledge.
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Generally, Word Sense Disambiguation and Semantic Role Labeling are consi-
dered separately although they are strongly related. wsd can improve results in
srl (as different senses have different syntactic behaviours, specially verbs) and
vice-versa (e.g. using verbal preferences for wsd [Carroll and McCarthy, 2000]).
We decided to test pardon’s architecture on two main tasks involved in Semantic
Interpretation, namely Semantic Role Labeling and Word Sense Disambiguation.

While Chapter V presents an empirical study of the performance of par-

don’s architecture on a Semantic Role Labeing evaluation framework, Chapter
VI presents a similar study regarding Word Sense Disambiguation.

Finally, Chapter VII draws some conclusions and highlights the future research
lines that may outcome from the work presented here.
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CHAPTER II.

Knowlege, Data and Architectures for NLU

“There is always an easy solution to every human problem, neat, plausible and wrong.”

H. L. Mencken

II.1 Introduction

There are several inherent difficulties to most nlu tasks:

1. The open and compositional nature of language (i.e. the difficulty of building
complete repositories, or broad coverage grammars, etc).

2. The inconsistencies (either coming from the models, the knowledge or the
speaker).

3. The complex interaction between different nlp levels (e.g. syntax and seman-
tics [Grishman, 1995; Yangarber and Grishman, 1998; Appelt et al., 1996]).

4. The combinatorial explosion of possibilities produced by all these issues.

Although Semantic Interpretation includes other issues such as anaphora reso-
lution or quantifier scope resolution, our research will focus on two important sub-
tasks within Semantic Interpretation for testing our architecture: Semantic Role
Labeling (srl) and Word Sense Disambiguation (wsd). The traditional approaches
consider Word Sense Disambiguation and Semantic Role Labeling separately but
they are strongly related. wsd can improve results in srl (as different senses have
different syntactic behaviours, specially verbs) and vice-versa (e.g. using selectional
preferences to improve wsd [Carroll and McCarthy, 2000]).

Semantic Role Labeling consists in the production of a case-role analysis in which
the semantic roles –such as agent or instrument– played by each entity are identified
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[Brill and Mooney, 1997]. This is a crucial task in any application that involves some
level of Natural Language Understanding.

This chapter will focus on two major aspects of nlp architectures: the integration
of nlp processes and the integration of nlp data, to later introduce two complex
and interrelated tasks involved in nlu, srl and wsd.

II.2 Towards a General NLU Architecture

There has been a general trend towards the development of reference architectures in
nlp. While in nlu (e.g. Tipster architecture [Grishman, 1995], GATE [Cunningham
et al., 1996; Cunningham et al., 2002]1, LT-XML toolkit2, etc) this trend has been
quite successful in maintaining the neutrality with regard to linguistic theories, in
Natural Language Generation (NLG) it has just begun (e.g. RAGS3 [Cahill et al.,
2001a]) and it will probably be harder to achieve a similar success [Cahill et al.,
1999a].

Neither designing an nlp system [Leidner, 2003] nor to choosing a general ar-
chitecture are an easy tasks. [Callaway, 2003] claims that the architecture must be
chosen according to the specific task, taking into account their Processing aspects
and the Representation aspects.

That is, one the one hand, we should consider the Processing aspects, which
are both the decomposition of the whole process into subtasks and the control struc-
ture that coordinates the various modules for efficiency requirements. On the other
hand, we should also look at the Representation aspects, which are the relevant
information for each level, the intermediate representations between modules, and
the adequate formalisms to represent and manage the various kinds of knowledge
involved.

Although practical applications must constrain the feasible architectures within
the current technology (e.g. performance in a real-time application), there is also
no doubt either about the complexity of such analysis or the impact of choosing an
architecture that was too specific, when attempting a new nlp task. Reusability
has also been generally neglected in nlp [Leidner, 2003].

Systems are generally easier to build and debug if they are decomposed into
distinct, well-defined and easily-integrated modules with a well defined interface.
A modular approach is useful both from a psychological and from an engineering
point of view. Modularisation does more than facilitate the construction of a given
application. It also enables the reusing of components for different applications, and
makes it easier to change and update an application by restricting the scope of the
modifications required in particular modules. Also from a psychological point of
view, there is evidence for the existence and interaction of autonomous modules: it
seems that in human language generation, the mode of operation of each module
is minimally affected by the others. On the other hand, it could be argued that

1GATE2 is compliant with TIPSTER
2http://www.ltg.ed.ac.uk/software/xml/
3http://www.itri.brighton.ac.uk/projects/rags
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the speed at which humans deal with language requires different modules operating
simultaneously on different pieces of the utterance.

A paradigmatic and successful example of a modular approach for processing
human language is the Generic Architecture for Text Engineering (GATE)4. GATE
has been in development at the University of Sheffield since 1995 and has been
used in a wide variety of research and development projects, including Information
Extraction (IE) for several Languages. As an architecture, GATE suggests that
the elements of software systems that process natural language can be broken down
into various types of components. GATE’s components come in three flavours:
Language Resources (lexicons, corpora, or ontologies), Processing Resources (parsers,
generators, or n-gram modellers) and VisualResources (visualisation and editing
components that participate in GUIs).

Modular architectures have allowed nlp to evolve greatly. However, each of the
“standard” tasks (e.g. morphology, syntax, semantics, pragmatics, ...) still remains
difficult to solve or study, even in isolation. Moreover, it remains to be seen to what
extent it is realistic to have these different modules operating independently, and
how they should communicate.

Beyond efficiency considerations and specific task criteria, we need to explore
the limits of the current nlp technologies so that the impact of these simplifications
can be evaluated in some way.

The different architectures proposed for nlu can be classified based on two main
dimensions, the level of integration of their processes and the level of integration of
their data. For example, following a similar paradigm, Mahesh [Mahesh, 1993] pro-
poses a classification of the models of natural language understanding as Sequential,
Integrated or Interactive, depending on how they relate to each other at different
levels of knowledge representation and processing.

The key difference between Interactive and Integrated models is the different
level of knowledge integration. The Interactive model retains an independent rep-
resentation for each different kind of knowledge, integrating them during processing.
On the other hand, The Integrated model5 assumes a full integration of knowledge
even if still performing all processes simultaneously.

Although integration is not always contradictory with modularity (e.g. the Ref-
erence Architecture for Generation Systems Project (RAGS) [Cahill et al., 1999b],
[Cahill et al., 2001b] introduces a framework for the representation of data in NLG
systems), in general, the assumption of integration not only makes it difficult to
acquire knowledge for this kind of systems but also to maintain the modularization
(e.g. the nlu system SAL [Jurafsky, 1992] uses integrated knowledge stored in a
monolithic knowledge base).

Before focusing on how an architecture can integrate knowledge and processes,
section II.3 will present which processes are usually involved in nlp, while section
II.4 will focus on the different kinds of knowledge these processes use.

4http://gate.ac.uk
5Also known as Flat model.
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II.3 NLP Processes

As previously mentioned, there is no well-established consensus about which are the
optimal components or processes of a nlu system. However, most nlp systems usu-
ally involve several processes, such as lemmatization, Part of Speech (PoS) tagging
or Parsing. The difficulty of achieving nlu, and also the difficulty of evaluating the
answers of a nlu system (i.e. black box evaluation), led the nlp community to
focus and evaluate these tasks independently and use them as a glass evaluation
of the whole nlu system.

At a semantic level, most of the nlu systems use a Multilevel semantics ar-
chitecture [Lavelli and Magnini, 1991] where a sequence of processing phases are
distinguished:

• Lexical Discrimination: The consistency check of the semantic part of the
constituent performed when a new constituent is built (normally done by the
parser).

• Anaphora and Quantifier Scoping Resolution: The identification of se-
mantically plausible referents for linguistic expressions such as pronouns, deitic
references, etc., as well as solving the scope of quantifiers.

• Contextual Interpretation The decisions of how to react in a given dialogic
situation, considering the type of request, the context, etc. Generally, this
requires knowledge about the speech acts, the dialog and the user model.

In order to build a “constituent”, several subtasks are needed. Among all these
common tasks or processes inside nlu, we would like to emphasize the following:
Tokenization, Part of Speech Tagging, Lemmatization, Word Sense Disambiguation,
Parsing, Semantic Role Labeling and Anaphora Resolution:

• Tokenization: This refers to the splitting of a sentence into words (e.g. /the/
/cat/ /eats/ /fish/ ). This division of a sentence in words has to face two major
problems:

– Multiword Expressions: Multiword expressions (MWEs) include a
large range of linguistic phenomena, such as phrasal verbs (e.g. “add
up”), nominal compounds (e.g. “telephone box”), and institutionalized
phrases (e.g. “salt and pepper”), and they can be syntactically and/or
semantically idiosyncratic in nature (See [Sag et al., 2001] for a survey).
MWEs are used frequently in everyday language, usually to express pre-
cisely ideas and concepts that cannot be compressed into a single word.

Due to their complexity and flexible nature, many nlp applications have
ignored them. Although, in the past few years there has been a grow-
ing awareness of Multiword Expressions (MWEs) not only within large
research projects specifically dedicated to MWEs (e.g. the Multiword
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Expression Project6), Workshops ACL-2004 Workshop on Multiword Ex-
pressions: Integrating Processing, ACL-2003 Workshop on Multiword Ex-
pressions: Analysis, Acquisition and Treatment) but also in projects fo-
cused on other particular nlp tasks such as parsing (e.g. Robust Ac-
curate Statistical Parsing, RASP7) and word sense disambiguation (e.g.
Meaning8).

Whilst there has been considerable research on the extraction of MWEs
[Schone and Jurafsky, 2001] or generating MWEs based on some knowl-
edge source (cf. [Villavicencio, 2003a] and [Villavicencio, 2003b]), little
work has been carried out in their identification. The traditional approach
to deal with MWEs has been searching for the longest word-sequence
match. An exception to the general use of the longest word-sequence
match can be found for Question Answering [Litkowski, 2000] and Word-
Sense Disambiguation ([Litkowski, 2001b], [Litkowski, 2001a], [Arranz et
al., 2005]).

– Named Entities: Named Entities are phrases that contain the names
of persons, organizations and locations as well as times and quantities.
These tasks consist of recognising these phrases and classifying them ac-
cording to a set of types (e.g. Location, Person, Organisation,
Money, ...). This is usually known as Named Entity Recognition and
Classification (NERC). Named Entity Recognition (NER) is a subtask of
Information Extraction, thus different NER systems were evaluated as a
part of the Sixth Message Understanding Conference in 1995 (MUC6).
After 1995 NER systems have been developed for some European lan-
guages and a few Asian languages. In 2002, the shared task of the Con-
ference on Computational Natural Language Learning (CoNLL-2002) also
concerned language-independent named entity recognition.

• Part of Speech Tagging: This process consists in assigning a morphosyntac-
tic label (e.g. noun, verb, adjective) to each word in a sentence (e.g. /the AT/
/cat NN1/ /eats VVZ/ /fish NN2/ ). The set of possible morphosyntactic la-
bels could vary (e.g. CLAWS tag set 9, Penn treebank PoS tag set10).

• Lemmatization: This is the extraction of a canonical reference form from
morphological variants, (e.g. the infinitive of a verb, as in eat for eating, or
the masculine singular form for a noun, as in cat for cats). Lemmatization
involves knowing not only the correct tokenization (i.e. having MWEs and
NEs correctly identified) but also the correct PoS for each item.

6http://mwe.stanford.edu
7http://www.informatics.susx.ac.uk/research/nlp/rasp
8http://www.lsi.upc.es/~nlp/meaning
9CLAWS5 http://www.comp.lancs.ac.uk/ucrel/claws5tags.html

10http://www.ling.upenn.edu/courses/Fall 2003/ling001/penn treebank pos.html
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• Word Sense Disambiguation (wsd): This refers to determining automati-
cally the sense of the content words of a sentence in context, usually according
to a sense repository such as WordNet (e.g. /the/ /cat#n#1/ /eat#v#3/
/fish#n#2/ ). The Senseval11 organization was created to evaluate the
strengths and weaknesses of such algorithms with respect to different words,
different varieties of language, and different languages within periodical com-
petitions. Disambiguation algorithms usually take as starting point text that
has been previously splitted into words (including NEs and MWEs) and PoS
Tagged, and some of them also use some syntactic features.

• Parsing: This process determines the syntactic structure and relations inside
a sentence. In nlp, parsing may be defined as the process of assigning struc-
tural descriptions to sequences of words. The input of most of the existing
parsers consists of part-of-speech sequences. The kind of assigned structural
description depends on the grammar12 according to which the parser attempts
to analyze the input.

Generally speaking, the motivation for parsing lies behind the belief that the
grammatical structure contributes to meaning and that discovering the gram-
matical structure of a word sequence is a necessary step in determining the
meaning of the sequence. In some parsers the construction of a meaning repre-
sentation is carried out in parallel with the derivation of a structural analysis
according to the grammar.

S

NP1

AT

The

NN1

cat

VP

VVZ

eats

NP2

NN2

fish

Figure II.1: Parsed Tree for “The cat eats fish”

Traditional parsers aim to recover exact and complete parses as the one shown
in figure II.1. However, unrestricted text is noisy, both because of errors and
because of the unavoidable incompleteness of lexicons and grammars13. When
a full sentence parse is not possible, most of the “full” parsers, instead of
rejecting the sentence as ungrammatical, attempt a parse covering the largest
substring of the sentence. These global parsing considerations sometimes lead

11http://www.senseval.org
12A description language plus a set of structural constraints.
13In restricted domains, it is difficult to integrate specialized rules (covering the sublanguage of

the domain) from a broad-coverage linguistically motivated grammar.
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to local errors. In many cases, a more local analyzer could perform better
[Grishman, 1995].

In order to avoid these problems Abney proposes a Chunk approach to parsing
in [Abney, 1991]. Chunking parsers build up small chunks using syntactic
criteria and, then, assemble larger structures only if they are semantically
licensed. Related to chunk parsing, there exists the notion of head 14 of a chunk,
which is crucial in many parsers, (e.g. Chunk Oriented Syntactic Analyzer
(CHAOS) [Basili et al., 1998]). Chunk parsing is widely used in nlp to limit
the analysis to the interesting context [Ciravegna and Cancedda, 1995] and for
robustness. In fact, there was a general movement to use chunk parsing in the
MUC systems [Grishman, 1995], on Speech Recognition Systems [Zechner and
Waibel, 1998], and so on. Chunk parsing has also been extended/applied to
control the chart parser strategy in order to obtain complete parsers [Ciravegna
and Lavelli, 1997].

On the other side, bracketing taggers (which tag the boundaries of groups)
(e.g. [Sang and Veenstra, 1999]) have evolved to tagging grammar functions
[Voutilainen and Padró, 1997] and complex syntactic groups of a limited depth
[Skut and Brants, 1998].

It is difficult to establish criteria for the evaluation of parsers. In 1991 the PAR-
SEVAL system for syntactically evaluating broad-coverage English-language
parsers was introduced. A new generation of parsing systems is emerging based
on different underlying frameworks and covering other languages. PARSEVAL
is not appropriate for many of these approaches (LREC 2002 Workshop Be-
yond PARSEVAL). The nlp community therefore needs to agree on a new set
of parser evaluation standards [Carroll et al., 1999].

The most widely used evaluation method is based on constituent and it was
proposed by the Grammar Evaluation Interest Group (PARSEVAL). However,
Caroll in [Carroll et al., 1999] proposes and uses a more robust evaluation
technique based on a dependency style analysis.

Beyond the parsing results, the need for a syntax-semantics interaction [Grish-
man, 1995; Yangarber and Grishman, 1998; Appelt et al., 1996] still remains
an open issue. This is particularly so when dealing with free word order lan-
guages such as Spanish or Catalan. However, the integration of Syntax and
Semantics in a Semantic Parser can vary significantly, going from Full In-
tegrated Systems (where syntax and semantics interact at the same level15)
to Syntax-First Systems (where syntax is resolved before any semantic ana-
lysis is carried out)16, or passing through Tandem17 Systems (where partial

14See the Shallow PARsing and Knowledge Extraction for Language Engineering (SPARKLE)
page at http://www.ilc.pi.cnr.it/sparkle.html for an overview

15E.g., SAL [Jurafsky, 1992] (integrated) or COMPERE [Mahesh, 1995] (interactive).
16E.g., syntax driven rule-by-rule systems where each syntactic rule has a corresponding semantic

interpretation rule, or those systems that are based on grammatical relations (such as Logical
OBJect and Logical SUBject).

17Also called interleaved systems.
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syntax results are semantically validated (syntax driven)18 or where semantic
attachments are proposed and then grammar rules relating the constituents
are searched for to accomplish such attachments (semantic driven). An exam-
ple of Tandem system is MOPTRANS/ULINK [Lytinen, 1986; Kirtner and
Lytinen, 1991]).

• Semantic Role Labeling (srl): A semantic role is the semantic relationship
that a syntactic constituent has with a predicate. Typical semantic arguments
include Agent, Patient, Instrument, etc. and also adjunctive arguments indi-
cating Locative, Temporal, Manner, Cause, or other aspects. Recognizing and
labeling semantic arguments is a key task for answering questions in Informa-
tion Extraction, Question Answering, Summarization, and, in general, in all
nlp tasks in which some kind of semantic interpretation is needed.

In two main evaluation conferences(CoNLL-2004 and Senseval-III), seman-
tic role labeling has been chosen as the shared task:

– The CoNLL-2004 shared task19 concerns the recognition of semantic roles
for the English language. Given a sentence, the task consists of analyz-
ing the propositions expressed by some target verbs in the sentence. In
particular, for each target verb all the constituents in the sentence which
fill a semantic role from the verb have to be recognized.

– The Senseval-IIItask20 calls for the development of srl systems to meet
the same objectives as those in Gildea and Jurafsky’s study [Gildea and
Jurafsky, 2002]. The data for this task was a sample from the FrameNet
hand-annotated data and the evaluation of systems followed the metrics
established in Gildea and Jurafsky’s study.

• Anaphora Resolution: An anaphora is, roughly speaking, an abbreviated
linguistic form whose full meaning can only be recovered by reference to the
context. The reference is called Anaphora, and the mention of the entity to
which anaphora refers is called the Antecedent (e.g. the problem of resolving
what a pronoun refers to, like knowing what the referent of “it” is in the
sentence “the cat catches a mouse and eats it”, see [Mitkov, 1999] for a survey).
Anaphora resolution is a difficult task for a machine (and even for humans)
and there is no doubt about the impact of anaphora resolution in other nlp

tasks. For example refer to [Vicedo and Ferrández, 2000] for the implications
of this task within Question Answering.

18e.g. absity [Hirst, 1987]
19http://www.lsi.upc.edu/~srlconll/
20http://www.clres.com/SensSemRoles.html
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II.3.1 NLP Process Integration

This section will focus on the different ways in which processes could relate to each
other in the nlu architectures. Basically, two main models of process interaction
can be distinguished: Sequential and Interactive.

In Sequential models21, each level receives the output of the previous level and
provides its output to the next one. Most of the current nlp architectures follow
this Sequential model, mainly because it leads to the modularization of each task.
However, it is not clear how this architecture could deal with overconstrained tasks,
knowledge inconsistencies or the lack of necessary knowledge to solve a particular
task.

The traditional pipeline approach works without underspecification. That is, a
module can not postpone decisions and must give a single solution. Modules can
not subsequently use information obtained through the operation of later modules
to filter their set of solutions. In some systems, this problem is eased without
breaking the sequential flow of information, by underspecifying the set of values
(e.g. simplifying the set of PoS labels) or by allowing the modules’ result to be a set
of weighted values (instead of a unique value) (e.g. [Amtrup, 1998] or multitagging
[Charniak et al., 1996]). However, in a sequential model, this set of solutions is
passed on to the next module, but then the next modules are the ones in charge of
reconsidering/filtering the set of results (and thus, breaking the modularity).

The interaction between syntax and semantics is a paradigmatic issue in nlu

that points to a more integrated approach (e.g. wsd systems do not seem to have
improved greatly between Senseval-II and Senseval-III), but nowadays other
current challenges (e.g. wsd, srl, MultiWord Expressions, etc.) also need new
solutions.

Once we decide to allow the communication between different modules (Interac-
tive Model), the integration of the different processes could be realized in different
ways. [Smedt et al., 1996] differentiate three basic kinds of interactive control in-
formation flow for Natural Language Generation (NLG) (which also applies to nlp

systems): Feedback, Revision Based and Blackboard.
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Figure II.2: Revision Based Architecture

Figure II.2 shows a Revision Based (or recursive Pipeline) architecture, which
is basically a sequential process but the whole result can be revised/reprocessed
at some point, if necessary (e.g. Hylite+ [Bontcheva and Wilks, 2001], a dynamic
hypertext generation system).

21They are sometimes also referred to as Stratified models.
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Figure II.3: Feedback Architecture

In a Feedback (or Interleaved) control flow, the modules work in turns, collab-
orating (see figure II.3). For example, in absity (A Better Semantic Interpreter
Than Yours) [Hirst, 1987], the syntactic and semantic modules work in tandem to
build a semantic interpretation.
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Figure II.4: Blackboard Architecture

The most general scheme of workflow is Blackboard, shown in figure II.4. A
Blackboard System uses a shared data structure, referred to as the blackboard (BB),
that contains the data of a problem to be solved and a number of different processes,
referred to as modules22, that can access and modify the blackboard. Each module
will post a partial solution whenever it can contribute to the overall solution of the
problem. These partial solutions cause other modules to update their portions of
the solution on the blackboard until eventually an answer is found.

Modules are production sets where each of them is specialized in a different type
of knowledge (data-driven algorithms). Asynchronously, each module checks the BB
and if it finds the appropriate input, the module processes it, and posts its results
on the BB.

Meta-Control is the gateway to the BB for result posting and may rate these
partial results to guide the search. It is also responsible for solution recognition. The
blackboard architecture maps naturally onto multiprocessing systems or heteroge-
neous nlp components (e.g. Verbmobil-II architecture [Wahlster, 2000]). Different
modules may be working on different parts or the same part of the problem (e.g.
COMPERE [Mahesh, 1995] which integrates syntactic and semantic knowledge dur-
ing processing, or the WHITEBOARD project which integrates deep and shallow
parsing [Crysmann et al., 2002], and the EARSAY-II speech understanding system
[Erman et al., 1980]).

However, BB also raises multiple issues [Boitet and Seligman, 1994], such as
concurrence control or the communication overload, as well as the difficulties in
debugging or finding an exact explanation for reaching a specific solution.

22Sometimes, also known as knowledge sources (KS)
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II.4 Knowledge for NLP

The previous section focused on the different ways in which processes could relate
to each other in nlu architectures. This section focuses on linguistic resources used
for nlu.

The term linguistic resource refers to large sets of linguistic data and descriptions
in machine readable form to be used in building, improving, or evaluating natural
language systems. Examples of linguistic resources are written and spoken corpora,
lexical databases, grammars, and so on.

This section deals with some of these resources, mainly focusing on those lexical
semantic resources related to srl and wsd. There has been a number of initiatives
to build real-world lexicons for semantic processing, most of them somehow related
to Levin’s Verb Classes [Levin, 1993] and WordNet [Miller et al., 1998]. Some
examples are:

• WordNet: The Princeton WordNet [Miller et al., 1990; Fellbaum, 1998] is
a lexical database which contains information about nouns, verbs, adjectives
and adverbs in English and is organized around the notion of a synset. A
synset is a set of words with the same part-of-speech that can be interchanged
in a certain context. Synsets are related to each other by semantic relations,
such as hyponymy (between specific and more general concepts), meronymy
(between parts and wholes), cause, entailment, etc.

• EuroWordNet (EuWn): EuroWordNet is a multilingual lexical database
with wordnets for several European languages, which are structured as the
Princeton WordNet. The EuroWordNet architecture includes the Inter–
Lingual–Index (Ili), a Domain ontology and a Top Concept ontology
[Vossen, 1998]. The Ili consists of a list of records which interconnect word
meanings in the local wordnets. During the EuroWordNet project, around
1,000 ILI-records were selected as Base Concepts (BCs) and consistently
connected to the Top Concept ontology23.

• MultiWordNet Domains: MultiWordNet Domains [Magnini and Cavaglia,
2000] were partially derived from the Dewey Decimal Classification24. Multi-
WordNet Domains is a hierarchy of 165 Domain Labels associated to WordNet
1.6. Information brought by Domain Labels is complementary to what is al-
ready in WordNet. Domain Labels may include synsets from different syntactic
categories: for instance, Medicine groups together senses from nouns, such as
doctor and hospital, and from verbs such as to operate, and also from different
WordNet subhierarchies (i.e. synsets deriving from different unique beginners
or from different lexicographer files).

• Suggested Upper Merged Ontology (sumo): sumo25 [Niles and Pease,

23http://www.illc.uva.nl/EuroWordNet/corebcs/topont.html
24http://www.oclc.org/dewey
25http://ontology.teknowledge.com/
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2001] has been created as part of the IEEE Standard Upper Ontology Work-
ing Group. The goal of this Working Group is to develop a standard upper
ontology that will promote data interoperability, information search and re-
trieval, automated inference, and natural language processing. sumo provides
definitions for general purpose terms and is the result of merging different free
upper ontologies (e.g. Sowa’s upper ontology, Allen’s temporal axioms, Guar-
ino’s formal theory of parts and boundaries, etc.). sumo consists of a set of
concepts, relations, and axioms that formalize an upper ontology. There is a
complete set of mappings from WordNet 1.6 synsets to sumo.

• University of Maryland’s Lexical Conceptual Structures (LCS)
Database26: This database [Dorr, 1993b] is based on the notion of LCS [Jack-
endoff, 1972]. LCS is a compositional abstraction with language independent
properties. It has being used, for example, as the interlingua representation
in several Machine Translation Systems (such as in UNITRAN [Dorr, 1993a]
and MILT [Dorr, 1997]). Another related work for Spanish is that developed
in LEXPIR [Fernández and Mart́ı, 1996] and [Vázquez et al., 2000].

• VerbNet27 [Kipper et al., 2000]: This is an enrichment of verb entries in
WordNet that includes more specific syntactic information and verb class mem-
bership. It also draws heavily on the English Tree-Adjoining Grammar. Cur-
rently, the PropBank corpus28 [Kingsbury and Palmer, 2002], [Kingsbury et
al., 2002] and [Palmer et al., 2002] is being extended with VerbNet semantic
predicates [Kipper et al., 2002]. A similar work is being carried out for nouns
[Meyers et al., 2004], in the NomBank project 29.

• Fernando Gomez’s work30 enhanced WordNet with verbal predicates
[Gomez, 1998] and designed and implemented an algorithm that uses these
predicate definitions to solve verb meaning, thematic roles and prepositional
attachments [Gomez, 2001].

• FrameNet31 [Baker et al., 1998]: This is based on frame semantics [Fillmore,
1968; Petruck, 1996]32. Currently, FrameNet’s lexicon contains more than
4,000 lexical units (word senses) but the aim is to annotate 10,000 or more
by the end of the FrameNet II project. FrameNet also provides a corpus of
annotated examples (about 100,000 sentences).

These resources differ in their semantic representations (LCS vs Semantic
Frames, arguments vs thematic roles) or semantic decomposition principles. How-
ever, some of these resources (e.g VerbNet, Framenet, PropBank and WordNet

26http://www.umiacs.umd.edu/~bonnie/LCS Database Documentation.html
27http://www.cis.upenn.edu/verbnet/
28http://www.cis.upenn.edu/~mpalmer/project pages/ACE.htm
29http://nlp.cs.nyu.edu/meyers/NomBank.html
30http://www.cs.ucf.edu/~gomez
31http://www.icsi.berkeley.edu/~framenet
32See [F. Baker and Ruppenhofer, 2002] for a comparison between FrameNet’s Frames and

Levin’s Verb Classes.



II.4 Knowledge for NLP 23

synsets) can be related through the Unified index33. Nowadays, there is a real
need for the integration of these different resources to face wsd or srl. There are
recent initiatives to build a real connection between these resources either manually
(e.g. 3,094 entries integrating WordNet, FrameNet and VerbNet [Shi and Mihalcea,
2005]) or automatically (e.g. integrating FrameNet and PropBank [Giuglea and
Moschitti, 2004]).

An alternative to the manual development of these resources is their automatic
acquisition. This implies employing learning techniques to automatically extract
linguistic knowledge from natural language corpora rather than require the system
developer to manually encode the required knowledge. The following section pro-
vides an overview on these automatic methods.

II.4.1 Lexical Acquisition

Automatic lexical acquisition is an old open issue in nlp. A large battery of Ma-
chine Learning (e.g. Memory-Based Learning (MBL)), statistical (e.g. Minimum
Description Length (MDL), Maximum Likelihood Estimation(MLE)/Estimation-
Maximization Algorithm (EM algorithm)) or even heuristic methods have been used
to obtain implicit information from structured and unstructured lexical resources.

Obtaining large explicit lexicons that are rich enough for nlp has proved difficult.
Methods for automatic lexical acquisition have been developed for many topics and
include collocations [Dunning, 1993; Justeson and Katz, 1995], word senses [Schütze,
1992; Lin and Pantel, 1994], prepositional phrase attachment ambiguity [Hindle
and Rooth, 1993], selectional preferences [Resnik, 1993; Ribas, 1995; Li and Abe,
1998; McCarthy, 2001; Agirre and Martinez, 2001; Agirre and Martinez, 2002],
subcategorization frames (SCFs) [Brent, 1991; Brent, 1993; Ushioda et al., 1993;
Manning, 1993; Briscoe and Carroll, 1997; Carroll and Rooth, 1998; Gahl, 1998;
Lapata, 1993; Zarkar and Zeman, 2000; Korhonen, 2002] and diathesis alternations
[Lapata, 1993; Lapata, 2001; Schulte im Walde, 2000; McCarthy, 2001].

Being a multidimensional problem, predicate knowledge is one of the most com-
plex types of information to acquire. Predicates (verbs and their corresponding
nominalizations) are essential for the development of robust and accurate parsing
technology that is capable of recovering predicate-argument relations and logical
forms. Without predicate knowledge, resolving most structural ambiguities within
a sentence is difficult, and understanding (representing at a semantic level) impos-
sible. In that sense, the acquisition of predicate-argument associations is related
to the automatic acquisition of patterns [Utsuro and Matsumoto, 1997],[Argamon
et al., 1998], and IE-rule learning [Chai and Biermann, 1997], [Nobata and Sekine,
1999], [Turmo et al., 1999].

33See the Verb Frame Search Tool at http://www.cis.upenn.edu/~dgildea/Verbs/
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Predicate-argument knowledge has been shown to vary across corpus types (writ-
ten vs. spoken), corpus genres (e.g. financial news vs. balanced text), and discourse
types (single sentences vs. connected discourse) [Carroll and Rooth, 1998; Roland et
al., 2000; Roland and Jurafsky, 1998]. [Roland and Jurafsky, 2002] have shown that
much of this variation is caused by the effects of different corpus genres on the senses
of a verb and by the effect of senses of a verb on predicate-argument associations.

Full account of predicate information requires specifying the number and type of
arguments, the predicate sense, semantic representation of the particular predicate-
argument component, mapping between the syntactic and semantic levels of rep-
resentation, semantic selectional restrictions/preferences on participants, control of
the omitted participants and possible diathesis alternations, etc. Unfortunately, all
these kinds of knowledge are completely interdependent.

II.4.1.1 Traditional Approaches to Lexical Acquisition

Basically, the acquisition of predicate-argument associations has been merely syntax
driven. Following a bottom-up approach, from syntax to semantics, if we identify
specific associations between SCFs and predicates, we can gather information from
corpus data about head lemmas which occur in argument slots of SCFs and use this
information as input to selectional preference acquisition [McCarthy, 2001; Schulte
im Walde, 2000]. Selectional preferences are an important part of predicate infor-
mation, since they can be used to aid anaphora resolution [Ge et al., 1998], wsd

[Ribas, 1995; Resnik, 1997; McCarthy et al., 2001; Grishman and Sterling, 1994]
and automatic identification of diathesis alternations from corpus data [Schulte im
Walde, 2000; Lapata, 1993; Stevenson and Merlo, 1998; McCarthy, 2001]. Most of
these approaches are based on pre-existing syntactically annotated corpora which
distinguish adjuncts from arguments. On the other hand, pure-syntactic SCFs can
be acquired from corpora, or obtained using a parser and simple filtering techniques
[Briscoe and Carroll, 1997] and improved with linguist cues [Lapata, 1993] or diathe-
sis models [Korhonen, 1998]. Some semi-automatic approaches to obtain SCF (e.g.
[Basili et al., 1996]) have been also proposed.

The methods used for automatic subcategorization acquisition can be divided
into two groups: those based on Statistical Methods and those based on Machine
Learning techniques.

II.4.1.2 Statistical Methods for Lexical Acquisition

Modeling the language in a statistical framework allows to apply different statistical
techniques to obtain information from corpora with a different level of annotation
(word form, lemmatized, PoS tagged, etc). In fact, most of the methods rely on
the existence of syntactically analyzed corpora. Among all, Minimum Description
Length (MDL) and Expectation Maximization (EM) are the most used statistical
techniques.
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MDL is a well-motivated and theoretically-sound principle of statistic estimation
from information theory. MDL is based on the criteria that the best probability
model for a given data is that which requires the least code length bits for encoding
the model itself (model description length) and the given data observed through
it (data description length). MDL (using a Tree-Cut-Model representation against
Wordnet[Li and Abe, 1995]) has been applied to the generalization of case-frames [Li
and Abe, 1995; McCarthy, 1997] and also to detect diathesis alternations [McCarthy
and Korhonen, 1997; McCarthy, 2000].

EM algorithm performs Maximum Likelihood Estimation (MLE) for data in
which some variables are unobserved. [Rooth et al., 1999] applies EM algorithm
(representing the verbal classes as hidden variables) to classify the English verbs ac-
cording to its alterations, obtaining a clustering of verbs similar to the linguistically
motivated classification of Levin’s [Levin, 1993]. In [Miguel et al., 1999; Miguel et al.,
1998], Portuguese verbs are clustered according to its subcategorization behaviour
using MLE on a Log Linear Model.

II.4.1.3 Machine Learning Methods for Lexical Acquisition

On the other hand, Machine Learning (ML) techniques are evolving rapidly. Firstly,
these techniques were applied to simple tasks, e.g. MBL was used to distinguish
arguments from adjuncts so that instances of the different subcategorization frames
could be retrieved [Buchholz, 1998] or to learn local syntactic patterns [Argamon et
al., 1998]. MBL34 is a supervised Machine Learning technique for clustering which
is closely related to the k nearest neighbours classifiers. The basic idea is to store
all the instances in memory without making any abstraction or explicit rule. Given
an example, a similarity measure is used to find the most similar instances stored.

Lately, there has been a great effort to perform more complex tasks, such as
assigning semantic roles, using more sophisticated ML techniques such as Support
Vector Machines (SVM). Unfortunately, most of these ML techniques are based on
building black-box classifiers. This makes it basically impossible to extract any
explicit knowledge that is to be extended or combined with other resources.

II.4.1.4 Future Directions

These methods are still under development and need further research before they
can be successfully applied to large scale acquisition. However, [Korhonen, 2002]
showed that in terms of SCF distributions, individual verbs correlate more closely
with syntactically similar verbs and clearly more closely with semantically similar
verbs, than with all verbs in general. Moreover, her results show that verb semantic
generalisations can successfully be used to guide and structure the acquisition of
SCFs from corpus data.

34Also known as Instance Base or Case Base Learning.
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Thus, it is possible to devise alternative acquisition schemes going top-down from
semantics to syntax. If we identify specific associations between participants and
predicates (selectional preferences), we can also gather information from corpus data
about their particular syntactic behaviour with respect to a predicate, thus helping
the acquisition of SCFs, diathesis alternations, etc. However, this new approach
requires working directly at a sense level, having predicates and associations to
participants semantically disambiguated.

Language diversity is not usually addressed on these works and there have been a
few works related to the acquisition of subcategorization frames for languages other
than English: Portuguese [Miguel et al., 1998; Miguel et al., 1999], German (B7
project)35 and Spanish [Esteve Ferrer, 2004].

Furthermore, in a multilingual semantic scenario, it seems possible to devise
ways to acquire some predicate-argument knowledge from a particular language and
using a bottom-up approach, and then, following a top-down fashion, to acquire or
validate the acquired knowledge in another language.

II.4.2 NLP Knowledge Integration

Building appropriate resources for broad–coverage processing is a hard and expensive
task, involving large research groups during long periods of development. The man-
ual creation of these resources, specially when semantics is involved, usually implies
several difficulties, e.g. consistency, coverage, completeness. Moreover, sometimes
it is difficult to annotate or make explicit all the information, e.g. in FrameNet,
there is no explicit modelling of the syntactic realization of the frame elements.
Currently, this relation is being made explicit in the annotation of the FrameNet
corpus. Thus, they allow the automatic learning of these models by the application
of Machine Learning/Statistical techniques (See [Gildea and Jurafsky, 2000; Gildea
and Jurafsky, 2002]).

Beyond the complexity of obtaining (manually or automatically) these kind of re-
sources, it is unrealistic to expect that a single comprehensive theory or resource can
account for all the phenomena in nlp. There are many resources, sense repositories
(WordNet, dictionaries), Ontologies (CYC, sumo), verbal subcategorization and se-
lectional preference information (LEXPIR, LCS, VerbNet, PropBank, FrameNet).
All these resources vary considerably not only in the kind of knowledge they hold
but also in the paradigms they are built on.

All these resources bring different pieces of information that could be the touch-
stone to understand the meaning of the whole sentence. Although all these resources
could give partial, and sometimes contradictory information, nlp applications will
need to use different nlp resources together to accomplish their particular task.
Thus, some kind of integration of these resources is needed.

35http://www.sfs.nphil.uni-tuebingen.de/∼abney/b7home.html
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The integration of already existing knowledge is also an open issue in many fields
(information fusion [Menzel, 2002], ontologies, speech recognition, image recogni-
tion). It presents multiple difficulties given that either the knowledge components
come from different data sources (e.g. enrichment (integration/fusion) of manual re-
sources with automatically acquired knowledge), or the different knowledge compo-
nents have been developed based on completely different paradigms or the different
components have been designed to keep a separate representation of different types
of knowledge (e.g. to improve performance, portability).

Furthermore, the current consensus that all nlp systems that need to represent
and manipulate meanings require an ontology raises a hard integration issue: the
use of ontologies and their integration with other traditional resources in nlp (e.g.
WordNet). Ontologies, although being meaningful constructs, can not be straight-
forwardly used for nlp unless they are associated to linguistic units and structures.

II.4.2.1 The Integration of Ontologies in NLU

A straightforward way to associate an ontology to linguistic units is integrating
it with the de facto standard for wsd, that is, WordNet (e.g. that is the case
of the Suggested Upper Merged Ontology (sumo) [Niles and Pease, 2001]). This
approach has two main advantages: firstly, WordNet offers a wide coverage; secondly,
wordnets and ontologies are both graphs connecting concepts, thus, it seems easier
to integrate or to build a map between them than to integrate ontologies with other
less structured/rich resources (such as thesauri).

However, Ontologies and WordNet are different in nature: while wordnets build
concepts upon lexical units of a particular language, nodes in ontologies are claimed
to be language-independent concepts.

Moreover, different ontologies are usually designed based on different theoretical
grounds; e.g. while sumo incorporates previous ontologies and insights by Sowa,
Pierce, Russell and Norvig, and others, the EuroWordNet Top Concept Ontology is
based on more linguistic grounds: Lyons, Vendler, Verkuyl and Pustejovsky. There-
fore, although different ontologies can be comparable, it would take a great theoret-
ical effort to merge all of them in a unique standard and comprehensive construct
to be consistently associated to WordNet.

In order to show the complexity of this integration, Appendix B contains the
different pieces of information that could be associated to the sentence “The cat
eats fish” on some of the most broadly used resources in nlp, WordNet, VerbNet,
FrameNet, sumo and MultiWordNet Domains.



28 Knowlege, Data and Architectures for NLU

II.5 Integrating NLP Processes and Knowledge

While sections II.4.2 and II.3.1 have shown the issues in integrating Knowledge
and Processes independently. This section is related to approaches which aim to
integrate both simultaneously.

Constraints can help us to integrate both, processes and knowledge, in the same
framework. On the one hand, many forms of ambiguity arising in computational
linguistics can be represented compactly and elegantly, and be processed efficiently
with constraints. On the other hand, many nlp process (e.g. many wsd techniques)
could also be represented as constraints.

It was during the 70s that the first works on Constraint Satisfaction Problems
(csps) appeared. The Constraint Satisfaction framework allows to express proper-
ties of a problem by means of constraints and search for a solution using specialized
algorithms. csp has been applied to solve a wide range of problems, e.g. scheduling
[Agnese et al., 1995], hardware verification, graph matching [Rudolf, 1999], machine
vision, etc.

Finding a solution that holds all the constraints of a csp is NP-complete. How-
ever, finding the “best” possible solution, even if we violate some constraint36 is
NP-hard. Thus, it is believed that any algorithm to solve these kinds of problems
will present exponential worst-case behaviour.

However, in most real applications, and nlp is not an exception but a clear
example, we need to express fuzziness, possibilities, preferences, costs, that is, soft
constraints, and then the problem to be solved becomes over-constrained. Despite
the advances in the area of solving efficiently these kinds of csps with soft constraints
(or preferences) [Beale, 1996], [Rudova, 2001], it still remains an open issue.

A natural way to model Constraint Satisfaction Problems is the Consistent Label-
ing Problems (clps) [Messeguer and Larossa, 1995]. A Consistent Labeling Problem
basically stands as the problem of finding the most consistent value assignments for
a set of variables, given a set of constraints.

Both clp and csp are being successfully used in several nlp tasks, such as Part of
Speech tagging ([Pelillo, 1991], [Pelillo and Refice, 1994], [Padró, 1998]), for parsing
using Constraint Grammars [Voutilainen and Padró, 1997] and Weighted Constraint
Dependency Grammars (WCDG) ([Schröder, 2002], [Daum et al., 2002], [Foth et al.,
2003], [Daum, 2004] which uses constraint optimization techniques to integrate deep
and shallow parsing techniques for German). Such techniques are also being applied
to more complex tasks, such as Machine Translation (Mikrokosmos [Beale, 1996]),
Text planning (Iconoclast37 [Kibble and Power, 2000]) or taxonomy mapping
[Daudé, 2005].

36Often known as partial constraint satisfaction.
37http://www.itri.brighton.ac.uk/projects/iconoclast
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Consistent Labeling Problems (clp) can be solved via Relaxation Labeling. Re-
laxation labeling is a generic name for a family of iterative algorithms which perform
function optimization, based on local information (see Appendix A for a more formal
introduction to clp and relaxation labeling algorithms).

The main advantages of the relaxation labeling algorithm are:

• Its highly local character (each variable can compute its new label weights
given only the state at previous time step). This makes the algorithm highly
parallelizable (we could have a processor to compute the new label weights for
each variable, or even a processor to compute the weight for each label of each
variable).

• Its expressivity: The problem is stated in terms of constraints between variable
labels.

• Its flexibility: We do not have to check absolute consistency of constraints.

• Its robustness: It can give an answer to problems without an exact solution
(incompatible constraints, insufficient data, . . . )

The main drawbacks of the relaxation labeling algorithm are:

• Its cost. Being n the number of variables, v the average number of possible
labels per variable, c the average number of constraints per label, and I the
average number of iterations until convergence, the average cost is n×v×c×I,
that is, it depends linearly on n, but for a problem with many labels and
constraints, or if convergence is not quickly achieved, the multiplying terms
might be much bigger than n.

• Since it acts as an approximation of gradient step algorithms, it has their
typical convergence problems: Found optima are local, and convergence is
not guaranteed, since the chosen step might be too large for the function to
optimize.
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CHAPTER III.

Knowledge Integration for NLU

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
”God bless me! but the Elephant
Is very like a wall!”

The Second, feeling of the tusk
Cried, ”Ho! what have we here,
So very round and smooth and sharp?
To me ‘tis mighty clear
This wonder of an Elephant
Is very like a spear!”

The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up he spake:
”I see,” quoth he, ”the Elephant
Is very like a snake!”

The Fourth reached out an eager hand,
And felt about the knee:
”What most this wondrous beast is like
Is mighty plain,” quoth he;
”’Tis clear enough the Elephant
Is very like a tree!”

The Fifth, who chanced to touch the ear,
Said: ”Even the blindest man
Can tell what this resembles most;
Deny the fact who can,
This marvel of an Elephant
Is very like a fan!”

The Sixth no sooner had begun
About the beast to grope,
Than, seizing on the swinging tail
That fell within his scope.
”I see,” quoth he, ”the Elephant
Is very like a rope!”

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,

And all were in the wrong!

John Godfrey Saxe’s (1816-1887) version of the The Blind Men and the Elephant

As mentioned before, it is unrealistic to expect that a single comprehensive re-
source can account for all the linguistic phenomena in nlp. There are many resources
available, sense repositories (WordNet, dictionaries), ontologies (EuroWordNet Top
Concept Ontology, sumo), verbal subcategorization and selectional preferences in-
formation (VerbNet, PropBank, FrameNet) which vary significantly not only in the
kind of knowledge they hold but also in the paradigms they are built on. Moreover,
all these resources seem to capture some piece of knowledge that the others do not
and which could be crucial to solve a particular nlp task.

Furthermore, nobody guarantees that even if the integration is possible, the
resulting resource will be either consistent, coherent or complete.

Any application which aims to be able to deal with natural language (e.g. un-
derstand, generate or translate) needs to have access to some representation of what
words mean and what the application domain looks like.

Obviously, integrating these different kinds of conceptual resources is not an
easy task, mainly due to their possible inconsistencies but also to the difficulty in
finding a balance between robustness and applicability. Since our test tasks (srl and
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wsd) are related to semantics, we will build our knowledge base (named Multilingual
Central Repository) around the de facto standard sense repository, that is, WordNet
[Miller et al., 1990; Fellbaum, 1998]. In order to maintain compatibility among all
the heterogeneous resources uploaded into the Multilingual Central Repository1, it
is fundamental to have a robust and advanced ontological support. We studied the
mapping of the main sources of ontological meaning (e.g. sumo, MultiWordNet
Domains, EWn Top Concept Ontology (tco), etc.) onto the Multilingual Central
Repository. We also presented a preliminary study on the utility of the tco to
support advanced ontological inference. It should also be pointed out that, since we
plan to work on an open domain, we did not integrate any domain-specific knowledge
base into the Multilingual Central Repository.

The following section describes the Multilingual Central Repository (hereafter
mcr) and the three different processes involved in the building of the mcr: the
Upload process, the Integration Process and the Porting process. The Upload
process relates the different resources and checks local consistence, the Integra-
tion process cross-checks and infers new knowledge, while the Porting process is
related to the mechanism for porting knowledge across different languages. In this
thesis we will focus mainly on the Upload and Integration Processes, but a detailed
description of the Porting Process and its results can be found in [Atserias et al.,
2004b].

III.1 mcr Overview

As we are dealing with semantics, we will integrate some existing resources based
on word senses. The Multilingual Central Repository is the result of the integration
of many different resources (different wordnet versions, Ontologies, SCFs lexicons)
using the de facto standard sense repository, WordNet. The resulting mcr is going
to constitute a natural multilingual large-scale linguistic resource for a number of
semantic processes that need large amounts of linguistic knowledge in order to be
effective tools (e.g. semantic web ontologies). The fact that word senses are linked
to concepts in mcr will allow for the appropriate representation and storage of the
acquired knowledge.

III.1.1 mcr Structure

mcr follows the model proposed by the EuroWordNet project2. EuroWordNet is a
multilingual lexical database with wordnets for several European languages, which
are structured as the Princeton WordNet [Fellbaum, 1998].

The Princeton WordNet contains information about nouns, verbs, adjectives and
adverbs in English and is organized around the notion of a synset. A synset is a set
of words with the same part-of-speech that can be interchanged in a certain context.

1This resource was developed in the framework of the Meaning project (IST-2001-34660)
http://www.lsi.up.edu/~nlp/meaning

2http://www.illc.uva.nl/EuroWordNet
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Synsets are related to each other by semantic relations, such as hyponymy (be-
tween specific and more general concepts), meronymy (between parts and wholes),
cause, entailment, etc.

The EuroWordNet architecture includes the Inter–Lingual–Index (Ili), a Do-
main ontology and a Top (Concept) ontology [Vossen, 1998]. The Ili consists
of a list of records which interconnect word meanings in the local wordnets. During
the EuroWordNet project, around 1,000 ILI-records were selected as Base Con-
cepts (BCs) and consistently connected to the Top Concept ontology3.

Figure III.1 gives a schematic presentation of the EuroWordNet architecture.
The language-independent structures are given in the middle: the ILI, a Domain
Ontology and a Top Concept Ontology. The ILI consists of a list of so-called ILI-
records (ILIRs) which are related to word-meanings in the local wordnets, (possibly)
to one or more Top Concepts and (possibly) to domains.

Figure III.1: EuroWordNet architecture

Using the Inter–Lingual–Index, wordnets are interconnected which allows to
go from the words in one language to similar words in the other languages. The ILI
of EuroWordNet was aligned to WordNet1.5, while the ILI of mcr has been aligned
to WordNet 1.6.

3http://www.illc.uva.nl/EuroWordNet/corebcs/topont.html
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The overall design of the EuroWordNet database made it possible to develop the
local wordnets relatively independent while guaranteeing a high level of compatibil-
ity. Among the specific measures taken to enlarge the compatibility of the different
resources was the definition of a common set of so-called Base Concepts. The
Base Concepts were used as a starting point by all the sites so as to develop the
cores of the different wordnets. Base Concepts are meanings that play a major role
in the wordnets.

The Ili is enhanced, enriched and structured by two separate ontologies:

• The Top Concept ontology, which is a hierarchy of language-independent
concepts (see Figure III.2) reflecting important semantic distinctions, e.g. Ob-
ject and Substance, Location, Dynamic.

• The Domain ontology, which is a hierarchy of domain labels. The domain
labels are knowledge structures grouping meanings in terms of topics or scripts,
e.g. Transport, Sports, Medicine, Gastronomy.

Top0

1stOrderEntity1 2ndOrderEntity0

Origin0

Natural32

Living30
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Human107

Creature2

Animal23

Artifact143

Form0
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3rdOrderEntity32

Figure III.2: The EuroWordNet Top-Ontology

The main purpose of the Top Concept ontology is to provide a common
framework for all the wordnets. However, in the EuroWordNet project, only the
Base Concepts were classified according to the Top Ontology. The superindex in
figure III.2 is the number of BCs associated to each Top Concept Ontology property.

On the other hand, the Domain ontology groups concepts in a different way,
based on scripts rather than classification. The information brought in by Domain
Labels is complements that already existing in WordNet.
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This multilingual structure allows to port the knowledge from one WordNet to
the other languages via the EuroWordNet Ili, maintaining the compatibility among
them. In that way, the Ili structure (including the Top Concept ontology and the
Domain ontology) will act as a natural backbone to transfer the different knowl-
edge acquired from each local wordnet to the other wordnets, balancing resources and
technological advances across languages. In the same way, all the different resources
(e.g. different ontologies) could be related through the ILI, and thus cross-checked.

III.1.2 mcr Content

The mcr includes only conceptual knowledge. This means that only semantic rela-
tions between synsets will be acquired, uploaded and ported across local wordnets.
However, when necessary, the relations acquired can be underspecified.

In that way, they will be uploaded and ported and will be ready to be used
by other acquisition processes and languages. For instance, consider the following
relation <gain> involved <money> captured as typical object. Although this
relation may be further refined into <gain> involved-patient <money> at a
later stage, other processes can profit immediately from a ported relation, such as
<ganar> involved <dinero> for Spanish.

Currently, the mcr integrates:

• Ili aligned to WordNet 1.6 [Fellbaum, 1998]:

– EuroWordNet Base Concepts [Vossen, 1998]

– BalKaNet Base Concepts [Cristea et al., 2003]

– EuroWordNet Top Concept Ontology [Vossen, 1998]

– MultiWordNet Domains [Magnini and Cavaglia, 2000]

– Suggested Upper Merged Ontology (sumo) [Niles and Pease, 2001]

• Local wordnets:

– Princeton English WordNet 1.5, 1.6, 1.7, 1.7.1, 2.0 [Fellbaum, 1998]

– eXtended WordNet (XWN) [Mihalcea and Moldovan, 2001]

– Basque wordnet [Agirre et al., 2002]

– Catalan wordnet [Beńıtez et al., 1998]

– Italian wordnet [Pianta et al., 2002]

– Spanish wordnet [Atserias et al., 1997]
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• Large collections of semantic preferences:

– Direct dependencies from Parsed SemCor [Agirre and Martinez, 2001]

– Semantic preferences acquired from SemCor [Agirre and Martinez, 2001; Agirre
and Martinez, 2002]

– Semantic preferences acquired from BNC [McCarthy, 2001]

• Large collections of Sense Examples:

– SemCor [Miller et al., 1993]

• Instances:

– Named Entities from IRST [Pianta et al., 2002]

– Instances from sumo [Niles and Pease, 2001]

– Named Entities from the work of Alfonseca [Alfonseca and Manandhar, 2002]

• Verb Lexicon

– VerbNet [Kipper et al., 2000]

A full description of the mcr and its contents can be found in [Atserias et al.,
2004f]. For simplicity, this chapter does not describe all the resources uploaded into
the mcr, but only the resources that are more relevant to the experiments described
in this thesis: Base Concepts, local wordnets, MultiWordNet Domains, sumo, Top
Concept Ontology, Instances, LCS and VerbNet .

III.1.2.1 Base Concepts

The main characteristic of the Base Concepts is their importance. We uploaded two
main groups of Base Concepts in the mcr: EuroWordNet’s Base Concepts and
Balkanet’s Base Concepts.

Although their basic aim is similar, they are built based on different criteria.
EuroWordNet’s Base Concepts were used as a starting point by all the sites in
order to develop the local wordnet cores and they were classified according to the
Top Ontology. The EuroWordNet Base Concepts were selected manually so as to
cover the most important concepts of the languages involved in the project [Vossen,
1998]. The Balkanet Project4 also defined three different subsets of Base Concepts
over WordNet1.7 [Tufis et al., 2004]. The first BalkaNet subset of BCs is the EWn

BCs subset 1 (approximately 1,300 concepts). The second BalKanet subset of BCs
are approximately 5,000 concepts common across all Balkan languages with high
frequency occurrences. The third BalKaNet subset of BCs (about 2,500) comprises
concepts selected in order to enrich the coverage of the local wordnets and fill in
potential gaps in the monolingual taxonomies.

4http://www.ceid.upatras.gr/Balkanet/
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III.1.2.2 Wn Lexicographer Files

Synsets are organized into forty-five lexicographer files based on syntactic category
and logical groupings. These lexicographer files can be also seen as a coarse–grained
sense distinctions or subject codes [Rigau et al., 1997]. Table III.1 presents the
synset distribution across the Lexicographer Files in Wn1.6. From left to right,
Lexicographer File number (LF), Frequency (#synsets) and the Lexicographer File
name comprising its respective Part–of–Speech (POS).

LF #synsets LF

00 14,734 adj.all
01 3,099 adj.pert
02 3,575 adv.all
03 13 noun.Tops
04 5,373 noun.act
05 7,295 noun.animal
06 9811 noun.artifact
07 2,634 noun.attribute
08 1,592 noun.body
09 2,261 noun.cognition
10 4,548 noun.communication
11 851 noun.event
12 394 noun.feeling
13 2,378 noun.food
14 1,832 noun.group
15 2,124 noun.location
16 41 noun.motive
17 1,050 noun.object
18 6410 noun.person
19 524 noun.phenomenon
20 7,873 noun.plant
21 908 noun.possession
22 521 noun.process

LF #synsets LF

23 1,104 noun.quantity
24 371 noun.relation
25 300 noun.shape
26 2,550 noun.state
27 2,392 noun.substance
28 875 noun.time
29 495 verb.body
30 2,006 verb.change
31 635 verb.cognition
32 1,388 verb.communication
33 411 verb.competition
34 229 verb.consumption
35 1,953 verb.contact
36 606 verb.creation
37 303 verb.emotion
38 1247 verb.motion
39 410 verb.perception
40 688 verb.possession
41 1,007 verb.social
42 671 verb.stative
43 78 verb.weather
44 82 adj.ppl

Table III.1: Semantic File distribution in Wn1.6

III.1.2.3 Local WordNets

Spanish [Atserias et al., 1997], Catalan [Beńıtez et al., 1998] and Basque [Agirre
et al., 2002] wordnets are the result of ten years of combined effort of several
research centers involved in different national and international projects. Their
first versions were built during the EuroWordNet project following the expand mo-
del [Vossen, 1998]. That is, following an automatic method and exploiting sev-
eral Spanish/Catalan/Basque-English bilingual dictionaries, WordNet synsets were
mapped into equivalent synsets in the local language. In that way, an aligned version
of WordNet 1.5 was built.

On the other hand, the Italian WordNet [Pianta et al., 2002], developed within
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the MultiWordNet5 project, is strictly aligned to Wn1.6. In the semi-automatic
construction of the Italian WordNet, the construction of the corresponding Ital-
ian synsets relies on various sources, such as Princeton WordNet and the Collins
English/Italian bilingual dictionary.

Finally, newer versions of Princeton WordNet are also enriching the mcr. For
instance, WordNet 2.0 comprises more than 42,000 new links between morphologi-
cally related nouns and verbs, a topical organization for many areas that classifies
synsets by category, region, or usage, as well as gloss and synset corrections, and
new terminology, mostly in the terrorism domain.

In this version, the Princeton team has added links for derivational morphology
between nouns and verbs. Furthermore, some synsets have also been organized into
topical domains. Although Princeton domains are always noun synsets, synsets
from every syntactic category can be connected. Each domain is further classified
as category, region, or usage.

III.1.2.4 MultiWordNet Domains

The initial EuroWordNet design included a Domain ontology. However, only the
Computer Domain was included into the EuroWordNet database. Thus, instead of
using the original EuroWordNet Domain ontology we uploaded the MultiWordNet
Domains.

MultiWordNet Domains [Magnini and Cavaglia, 2000] were partially derived
from the Dewey Decimal Classification6. WordNet Domains is a hierarchy of 165
Domain Labels associated to WordNet 1.6.

The information contained in these by Domain Labels complements that already
available in WordNet. First of all, Domain Labels may include synsets of different
syntactic categories: for instance MEDICINE groups together senses from nouns,
such as doctor and hospital, and from verbs such as to operate.

Secondly, a Domain Label may also contain senses from different WordNet sub-
hierarchies (i.e. sense that derives from different unique beginners or from different
lexicographer files). For example, SPORT contains senses such as <athlete>, deriv-
ing from <life form>, <game equipment> from <physical object>, <sport> from
<act>, and <playing field> from <location>.

III.1.2.5 Suggested Upper Merged Ontology (sumo)

sumo7 [Niles and Pease, 2001] has been created as part of the IEEE Standard
Upper Ontology Working Group. The goal of this Working Group is to develop a
standard upper ontology that will promote data interoperability, information search
and retrieval, automated inference, and natural language processing. sumo provides
definitions for general purpose terms and is the result of merging different free upper
ontologies (e.g. Sowa’s upper ontology, Allen’s temporal axioms, Guarino’s formal

5http://multiwordnet.itc.it
6http://www.oclc.org/dewey
7http://ontology.teknowledge.com/
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theory of parts and boundaries, etc.). There is also a complete set of mappings from
WordNet 1.6 synsets to sumo: nouns, verbs, adjectives, and adverbs.

sumo consists of a set of concepts, relations, and axioms that formalize an upper
ontology. An upper ontology is limited to concepts that are meta, generic, abstract
or philosophical, and hence are general enough to address (at a high level) a broad
range of domain areas. Concepts specific to particular domains are not included
in the upper ontology, but such an ontology does provide a structure upon which
ontologies for specific domains (e.g. medicine, finance, engineering, etc.) can
be constructed.

The sumo version uploaded into the mcr consists of 1,019 terms (all of them
connected to WordNet 1.6 synsets), 4,181 axioms and 822 rules.

We believe that further investigation is needed to compare sumo and the other
ontological sources. For instance, the process typology in sumo was inspired by
Beth Levin’s verb classes [Levin, 1993]. Among other things, this work attempts
to classify over 3,000 English verbs into 48 “semantically coherent verb classes”.
Some of the verb classes relate to static predicates in the ontology rather than to
processes, and some classes are syntactically motivated, e.g. the verb class that
takes predicative complements.

Currently, only the sumo labels and the sumo ontology subclass relations are
loaded into the mcr.

III.1.2.6 Instances

Regarding name entities and Instances, mcr integrates three different resources,
from Irst [Pianta et al., 2002], the work of Alfonseca and Manandhar [Alfonseca
and Manandhar, 2002], and the instance information contained in the Suggested
Upper Merged Ontology (sumo) [Niles and Pease, 2001]. The current figures for
these resources are:

• 6,961 Named Entities from the work of [Alfonseca and Manandhar, 2002]

• 5,561 Named Entities from sumo [Niles and Pease, 2001]

• 4,097 Named Entities from MultiWordNet [Pianta et al., 2002]

Although they share the basics of what an instance is, they use different criteria
and granularity to classify them. Once uploaded, A new ontology of Named Enti-
ties can be built in order to support and cover the formal criteria followed by the
three approaches. This initiative would be also very useful when comparing Named
Entities derived using different language processors.

III.1.2.7 LCS

The University of Maryland’s Lexical Conceptual Structures (LCS)
Database8 [Dorr, 1993b] is based on the notion of LCS [Jackendoff, 1972]. LCS

8http://www.umiacs.umd.edu/~bonnie/LCS Database Documentation.html
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is a compositional abstraction with language independent properties. It has being
used, for example, as the interlingua representation in several Machine Translation
Systems (such as UNITRAN [Dorr, 1993a] and MILT [Dorr, 1997]). Another related
work for Spanish is that developed in LEXPIR [Fernández and Mart́ı, 1996] and
[Vázquez et al., 2000].

III.1.2.8 VerbNet

VerbNet9 [Kipper et al., 2000] is an enrichment of verb entries in WordNet that
includes more specific syntactic information and verb class membership. It also
draws heavily on the English Tree-Adjoining Grammar. Currently, the PropBank
corpus10 ([Kingsbury and Palmer, 2002], [Kingsbury et al., 2002] and [Palmer et al.,
2002]) is being extended with VerbNet semantic predicate information [Kipper et
al., 2002].

III.2 The Uploading Process

This section focuses on the issues that have arised during the integration of the
above described resources into the mcr. Most of the resources uploaded into the
mcr have been derived from data linked to Wn1.6. However, the Basque, Catalan
and Spanish Wns were aligned to Wn1.5. Moreover, new and richer versions of
Princeton WordNet have appeared (e.g. WordNet 2.0) together with other resources
aligned to these new versions (e.g. eXtended WordNet) .

Although the technology to provide compatibility across wordnets exists [Daudé
et al., 1999; Daudé et al., 2000; Daudé et al., 2001]11 uploading resources linked to
wordnets not based on WordNet 1.6 to the mcr is a complex process.

To deal with the gaps between versions we used a set of accurate mappings be-
tween all involved English Wns so as to maintain the compatibility across wordnets.
These mappings are used to build the mapping between each particular wordnet
version (or the version to which a resource was aligned) and the mcr ILI (which
is aligned to WN1.6). Through a particular mapping between WordNet versions,
synsets can be split (1:N), joined (N:1), added (0:1) or deleted (1:0). For instance
table III.2 shows, for each different case, the number of links between Wn1.5 and
Wn1.6 synsets and the number of different synsets for each version involved.

1:1 1:N M:1 M:N 1:0 0:1
#1.5 #1.6 #1.5 #1.6 #1.5 #1.6 #1.5 #1.6 #1.5 #1.6 #1.5 #1.6

Noun 65,740 65,740 34 69 683 338 4 4 530 - - 4,994
Verb 10,841 10,841 21 42 212 106 2 1 160 - - 964
Adj 7,824 17,824 83 171 1,374 665 - - 243 - - 2,440
Adv 2,854 2,854 5 30 168 81 8 7 33 - - 448

Total 97,259 97,259 153 312 2,437 1,190 8 7 966 - - 8,846

Table III.2: Mapping Wn1.5 →Wn1.6 for Princeton WordNet version

9http://www.cis.upenn.edu/verbnet/
10http://www.cis.upenn.edu/~mpalmer/project pages/ACE.htm
11http://www.lsi.upc.es/~nlp
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Before describing the particular problems of uploading each different resource in
the mcr, we will explore the common issue of evaluating the impact of the alignment
to a new WordNet version.

III.2.1 Uploading Base Concepts

The procedure for selecting the EuroWordNet Base Concepts and the Top Ontology
is discussed in [Vossen, 1998]. The final set of common Base Concepts totalized
1030 WordNet 1.5 synsets.

The EuroWordNet’s Base Concepts from Wn1.5 have been mapped to Wn1.6.
After a manual revision and expansion to all Wn1.6 top beginners, the resulting Bc

for Wn1.6 totalized 1,601 Ili-records. In that way, the new version of Bc covers the
complete hierarchy of Ili-records. The BalKanet’s and Princeton’s Base Concepts
were also aligned to Wn1.6 from Wn1.7 and Wn2.0 respectively.

III.2.2 Uploading Top Concept Ontology

The original purpose of the EuroWordNet Top Concept ontology was to enforce
more uniformity and compatibility of the different wordnet developments.

The uploading of the Top Concept ontology was performed in two steps:

1. The properties were assigned automatically to WordNet 1.6 synsets through
the Wn1.5-Wn1.6 mapping.

2. The properties related to its semantic file were assigned to the WordNet 1.6
Tops (those synsets that has no father) which doesn’t have any property as-
signed through the mapping.

3. Fixing 38 synsets whose set of properties assigned by hand appeared to be
incompatible among them. For instance, the synset 4950638n subject 1 topic 1
theme 1 is assigned simultaneously to 3rdOrderEntity and Mental, which are
incompatible.

III.2.3 Evaluating the Uploading Process

In order to illustrate the evaluation of resource re-alignment from a version of Word-
Net to a newer one, we will present an exhaustive analysis of the alignment process
of the Spanish Wn from Wn1.5 to Wn1.6. Similar analysis can be performed for
the rest of the wordnets uploaded and could also help other Wn developers to keep
their local Wns up to date with respect to the latest Princeton wordnet.
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Uploading wordnets not based on WordNet1.6 to the mcr is a not a simple pro-
cess, because even if we perform manual checking of these connections, for those re-
maining cases of splitting or joining synsets the information inside the synsets should
be modified accordingly to avoid inconsistences. For instance table III.3 shows a
summary of the different cases when uploading the Spanish WordNet (aligned to
WN1.5), which results in the losing of 449 Spanish synsets.

1:1 1:N M:1 M:N
#1.5 #1.6 #1.5 #1.6 #1.5 #1.6 #1.5 #1.6

Noun 37,704 37,704 28 57 468 284 3 4
Verb 8,722 8,722 14 28 185 101 1 2
Adj 13,970 13,970 81 167 1,311 656 2 1

Total 60,396 60,396 123 252 1,964 1,041 6 7

Table III.3: Mapping synsets Wn1.5 →Wn1.6 figures for SpWN

The whole process of re-aligning wordnets (synsets and relations) not aligned to
WordNet1.6 to the new Ili based on WordNet1.6 consists of:

• Synsets: While “local” synsets (e.g. those created in the Spanish Wordnet) do
not vary, the synsets coming from Wn1.5 were mapped to Wn1.6 as follows:

1. For all splited synsets, all information of synset 1.5, including variants,
is copied to each of the equivalent synsets in 1.6

2. For all joined synsets, all information of the original synsets including
variants, is copied to the equivalent synset in 1.6

3. Manual revision is performed to validate the split and joined synsets for
the Basque/Catalan/Spanish WordNets.

• Relations: Since Basque, Catalan and Spanish wordnets were build semi-
automatically from Wn1.5, we consider that we should remove all the relations
imported from Wn1.5, replacing them with the relations coming from Wn1.6.
For the rest of Princeton WordNets the relations were not ported.

Only those relations added with respect to Wn1.5 were uploaded through the
mapping. Thus, even if we perform manual checking of these connections, for those
remaining cases of splitting or joining synsets the information inside the synsets
should be modified accordingly.
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We will focus on the mapping of the synsets, because the impact for re-aligning
the relations is minimum in the WordNets.

Since a manual checking of the whole mapping of the resulting Spanish wordnet
will be too time consuming, we will measure the quality of the mapping, measuring
how much a synset in the source-wordnet differs from their equivalents in the target-
wordnet. That is, how much their contents and their relations with other synsets
differ.

The mapping divides the synsets in four categories according to the cardinality
of the mapping relation (1:1) (1:N) (M:1) (M:N). On the one hand, we must perform
a revision of all the cases where the mappings are not one-to-one (1:1). Split synsets
(*:N) must be revised because not all the information which is copied to each new
resulting synset (i.e. variants/glosses/relations) will be correct. Similarly, for joined
synsets (M:*), because the resulting content information will be repeated or will not
be consistent.

On the other hand, the relaxation labeling algorithm used to build the mapping
tries to converge to the solution (mapping) that best holds a whole set of restrictions.
Although the best mapping is the most consistent, sometimes changes have to be
done in order to suit the new synset. In fact, even in those cases where there is a
1:1 mapping, we need to check the quality/consistency of the equivalences between
English wordnet versions.

The quality of the mappings regarding its content can be measured by comparing
the original synset and their equivalent in the target versions. That is, their synonym
set (exactly equal, extended, etc.) and glosses (empty, equal, extended, overlap, ...).
Similarly, we also measured the changes in the relations of the synset through the
mapping by measuring the changes in the Wn relations.

We choose a very simple way of combining the different measures by just calcu-
lating the mean of their values. First, the quality measure for each mapping between
a Wn1.5 synsets an Wn1.6 synsets is calculated. Then, the quality of the resulting
Wn1.6 synset (confidence score) is defined as the minimum of the quality of all its
mappings.

The following subsections explains in details these different measures over each
component of the synset: the Variant Based Measure (QVariant), the Lexicographer
File Measure (QSemf ), the Gloss Based Measure (QGloss) and Relationship Based
Measure (Qrel)
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III.2.3.1 Variant Based Measure (QVariant)

This measure is based in the overlapping between the set of variants of the source
and target synset. Due to the mapping construction both sets share at least a
variant. Thus, comparing the two set of variants we can find the following cases:
(EQ) both set of variants are equal, Wn1.6 variants includes Wn1.5 variants (EX-
TENDED)(see figure III.3), or viceversa that is Wn1.5 variants include Wn1.6
variants (REDUCED)(see figure III.4), or in the worst case none of the sets is
included in the other (OVERLAP) (see figure III.5). For these cases, we calcu-
late the score as: twice the number of common variants divided by the number of
variants in both synsets.

Wn1.5 00003128-r just#1 merely#1 only#1 simply#1
Wn1.6 00003737-r but#1 just#1 merely#1 only#1 simply#1

Figure III.3: Wn1.6 Extends the Wn1.5 variants

Wn1.5 00003345-v hiccough#1 hiccup#1 make a hiccup#1
Wn1.6 00002841-v hiccough#1 hiccup#1

Figure III.4: Wn1.6 Reduces the Wn1.5 variants

Wn1.5 00022594-r almost#2 close to#1
Wn1.6 00006065-r about#1 approximately#1 around#5

close to#1 just about#2 more or less#1
or so#1 roughly#1 some#1

Figure III.5: Wn1.6 and Wn1.5 variant set are not subsets of each other

III.2.3.2 Lexicographer File Measure (QSemf)

This measure is based in the overlapping between the lexicographer file of the synset
in Wn1.5 and the mapped Wn1.6 synset. This measure scores 1 if equal and -1
otherwise (there are only 431 synsets whose Lexicographer File differs through the
mapping).
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III.2.3.3 Gloss Based Measure (QGloss)

This measure is based in the overlapping between the words of the glosses. Before
comparing glosses, the possible examples included in the gloss are removed. Obvi-
ously these measures can be considerably improved by stemming, lemmatising or
parsing the glosses.

In a similar way than with the variants, both glosses could be equal (EQ), equal
except for the text inside parenthesis (NEAREQ), the Wn1.5 gloss could be a part
of Wn1.6 gloss (EXTENDED) or viceversa (REDUCED) or simple share some
common words (OVERLAP) as in Figure III.6. When mapping to Wn1.5. there
is another special case, (NULL) when the method can not by applied as not all
Wn1.5 synsets have a gloss.

Wn1.5 00005659-a being the most complete of its class
Wn1.6 00005386-a being the most comprehensive of its class

Figure III.6: Overlap Glosses

For these cases, we calculate the score as: twice the number of common words
divided by the number of words in both glosses or zero if the method is not applicable
(i.e. Wn1.5 synset has not gloss).

III.2.3.4 Relationship Based Measure (Qrel)

Once all the Wn1.5 synsets are mapped to Wn1.6, the relations can be also mapped
accordingly. This measure is based in the overlapping between the set of relations
of one synset in Wn1.5 and their equivalent/s in Wn1.6.

• EQ: All the Wn1.5 relations have a corresponding Wn1.6 relation.

• CHANGED: When some Wn1.5 relations do not have a corresponding
Wn1.6 relation. Then, the quality is calculated as the relation kept in Wn1.6
divided by the number of relations from Wn1.5.

• NONE: None of the Wn1.5 relations has the corresponding relation in Wn1.6.
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III.2.3.5 Results

Combining12 all these measures we can evaluate the impact of re-aligning a resource
to a new wordnet version. Following the SpWn example, we should point out that
using the mapping between Wn1.5 and Wn1.6, almost half of the mapped synsets
(42,161) have exactly the same variants and glosses. Table III.4 shows the quality
per POS of the 1:1 mapping. A global quality measure of 0.88 means that the impact
in the Spanish WordNet will be minimum. However, verb glosses seems to be more
difficult than for the rest of POS and the relation measure is quite low in adjectives
(0.66), maybe because there are few connections among them.

POS QVar QGloss QSem QRel Quality
noun 0.85 0.92 0.99 0.76 0.88
verb 0.91 0.77 0.99 0.92 0.90
adj 0.94 0.81 0.98 0.66 0.84

total 0.88 0.87 0.99 0.76 0.88

Table III.4: Quality measure for 1:1 Wn1.5 to Wn1.6 for Spanish wordnet.

Table III.5 shows the figures for SpWn1.5, the number of synsets which come
from Princeton Wn1.5, the number of “local” synsets (i.e. those synsets not ap-
pearing in the English WordNet), the resulting synsets aligned to Princeton Wn1.6
after the mapping and the final figures for SpWn1.6. As we can observe there is no
much change in coverage.

pos Spwn1.5 syn1.5 local syn1.6 Spwn1.6
noun 43,652 38,308 5,344 38,023 43,367
verb 9,258 9,045 213 8,830 9,043
adj 15,859 15,585 274 14,667 14,941

total 68,769 62,938 5,831 61,520 67,351

Table III.5: Figures for Spanish WordNet aligned to wn1.6

For simplicity, in the following sections we will mainly focus on those resources
which will be used in the experiments on the following chapters, that is, local word-
nets, Top Concept Ontology, sumo. For the rest of the resources (extended Word-
Net, selectional preferences, semcor examples, etc) an exhaustive description of their
uploading can be found in [Atserias et al., 2004f], [Atserias et al., 2004e], [Atserias
et al., 2004d] and [Atserias et al., 2004c].

12As explained before to combine these measures we calculate the mean.
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III.3 The Integration Process

Once all the different resources are correctly uploaded into the mcr, three different
subprocesses can be devised inside the integration process: realisation, generaliza-
tion and cross-checking. By realisation we mean the process of making explicit all
the knowledge contained into the mcr (e.g. expanding by inheritance, top-down
through the hierarchy, relations or properties), while by generalization we mean a
bottom–up mechanism to collapse or generalize on a particular Base Concepts and
ontological nodes different knowledge from the mcr. Both processes, realization
and generalization, can take advantage of other resources, that is cross-checking the
different knowledge sources.

III.3.1 Realisation

Realisation is the process of making explicit by inference (in particular, inheritance)
all the knowledge contained into the mcr. That is, expanding top-down relations
or properties, or making inferring knowledge using other properties e.g. transitivity.

For instance, once all this data is uploaded into the mcr, it is possible to perform
a full expansion process of the Top Ontology properties associated to the Base
Concepts through the nominal and verbal hierarchies.

Some of the selectional preferences acquired from SemCor and BNC in the
Meaning project and uploaded in the mcr could also be inherited through the
nominal part of the hierarchy. This process involves a huge computational effort.

III.3.1.1 Realization of the Top Concept Ontology

The EuroWordNet project only performed a complete validation of the consistency
of the Top Concept ontology of the Base Concepts. However, the classification
of WordNet is not always consistent with the Top Concept ontology.

In order to make explicit the Top Concept ontology properties for all the
synsets, we should propagate top–down the Top Concept ontology properties
assigned to the Base Concepts. That is, we will enrich the complete Ili structure
with features coming from the Bc by inheriting the Top Concept features following
the hyponymy relationship.

This way, once the ontological properties are exported to the Ili and inherited
through the complete Wn hierarchy, all Wn concepts will have associated a set of
semantic features as in the example shown in table III.6.

lentil 1
DOMAIN gastronomy

LF food
SUMO FruitOrVegetable
TCO Comestible ; Plant

Table III.6: lentil 1
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We use the following modifiers associated to the tco properties to state whether
the property has been, directly assigned (=), inherited using the top–down propaga-
tion using the wordnet structure (+) or assigned using the WordNet Lexicographer
File (#).

In order to provide consistency to the inheritance process we used the following
basic incompatibilities among tco properties (furtherly expanded to their daughter
concepts) which were defined inside the Ewn project:

• substance - object

• plant - animal - human - creature

• natural - artifact

• solid - liquid - gas

These incompatibilities impeded a fully automatic top–down propagation of the
tco properties. That is, when any of the current Top Concept ontology proper-
ties of a synset is incompatible with the property currently expanded, this property
is not assigned to the synset and the propagation to the synset’s descendants stops.

That full-automatic process resulted in a number of synsets showing non–
compatible information. Specifically:

• Sticking to tco and according to the set of incompatibilities, some tco prop-
erties assigned by hand appeared to be incompatible with either (a) inherited
information, (b) information assigned via equivalence to Lf

• tco properties, either original or inherited, are suspicious to be incompatible
with other Sources of Ontological Meaning (henceafter Som).

By manual examination of a subset of synsets, we realised that there are at least
the following main sources of errors: erroneous hand-made tco mappings, erroneous
statements of equivalence between tco properties and Lfs, erroneous ISA links
in Wn -which causes erroneous inheritance [Guarino and Welty, 2000]- and also
multiple inheritance within Wn. which can cause incompatibilities in inheritance of
properties

The example shown in table III.7 has incompatible information. 3rdOrderEntity
can not coexist with properties only attributable to Events (e.g. Cause).

00660718-v process 1
DOMAIN factotum

LF act
SUMO IntentionalProcess
TCO 3rdOrderEntity Cause Mental Purpose

Table III.7: 00660718-v process 1
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WordNet is a Direct Acyclic Graph, not a tree. A synset can have more than one
father (multiple inheritance). Thus, some of the Top Concept ontology properties
inherited from one ancestor could be incompatible with the Top Concept ontology
properties inherited from other ancestors. In those cases our automatic mechanism
chooses the first property that has been expanded to that synset. Figure III.7 shows
the inheritance of piece of leather (on the bottom of figure) inheriting Living (which
is obviously incorrect) and Natural Attribute (which could be questionable) from
skin but also Part from its other ancestors.

Part=

06684175-n
part71,piece#3

Linving=

0405832-n
body_partt#1

Part=

Living=

04087702-n
tissue#1

Part=

Solid=

040870907-n
animal_tissue#1

00001740-n

entity#1, something#1

04103288-n
connective_tissue#1

Natural=

00009457-n
object#1, phisical_object#1

Object=

Natural=

00010123-n
natural_object#1

Object=

Natural=

06672286-n

cover#1, covering#1,
natural_covering#1

Object=

Covering=

Living=

Part=

Solid=

06672286-n
body_covering#1

Living=

Part=

Solid=

04068217-n
skin#1, tegument#1,cutis#1

10537753-n
animal_product#1

10577352-n
animal_material#1

Substance=

10446867-n
material#, stuff#1

Substance=

00010572-n
matter#3, substancet#1

Part=

00010572-n
    part#4, portion#1

03119215-n
            piece#1

10580693-n
leather#1

03120175-n
piece_of_leather#1

10579741-n
animal_skin#1

Substance+

Natural+

Object+

Natural+

Object+
Natural+

Object+

Natural+

Natural+

Object+

Natural+

Natural+

Natural+

Natural+

Object+

Natural+

Object+

Natural+

Object+

Natural+

Object+

Natural+
Object+

Substance+

Substance+

Substance+

Part+

Living+

Solid+

Solid+

Solid+

Part+

Part+

Part+

Part+

Part+ Part+

Part+

Part+

Solid+

Part+

Part+

Living+

Living+

Living+

Living+

Living+

Living+

Solid+

Solid+

Covering+

Covering+

Covering+

Covering+

Natural+

Object+

Natural+

Object+

Living+

Covering+

Figure III.7: Multiple inheritance for piece of leather#1
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Multiple inheritance could also bring up a new type of problems. Figure III.8
shows another example where multiple inheritance will lead to inherited incompat-
ible attributes: Artifact from and Natural from organic compound 1.

00001740-n

entity#1, something#1

Natural=

00009457-n
object#1, phisical_object#1

Object=

Artifact=

Object=

00011937-n
artifact#1, artefact#1

10548994-n
          alkaloid#1

Substance=

Natural=

10560207-n
organic_compound#1
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10630741-n
compound#2,chemical_compound#1

Substance=

00010572-n
matter#3, substance#1

Substance=

02609065-n
             drug#1

Function=
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medicine#2, medication#1,
medicament#1,medical_drug#1

021981307-n
antispasmodic#1,spasmolytic#1,
 antispasmodic_agent#1

02221884-n
          atropine#1

Object+
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Artifact+ Substance+

Artifact+ Substance+
Function+

Artifact+
Substance+
Function+

Natural+

Natural+

Natural+

Natural+

Substance+

Substance+

Substance+

Figure III.8: Multiple inheritance for atropine#1

In this fully-automatic expansion the blocking points are established when in-
compatible properties are assigned to the same synset. Although we can stop the
top-down propagation of the feature, it is not possible to automatically determine
the correct assignments.
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Thus, in order to solve the tco incompatibilities, we proposed a semi-automatic
top-down procedure based on resolving these conflicts either by means of removing
erroneous properties or by establishing blocking-points where there is an erroneous
hypernonym relation.

The methodology is as follows:

1. Hand-fixing tco mappings when appearing incompatible properties

2. Setting inheritance–blocking–points and hand-fixing tco mappings around
these points (i.e. all involved hypernyms and hyponyms)

3. Recalculating the inheritance according to the information obtained in (1) and
(2)

4. Reexamining the involved subtrees to check whether re–calculation of the in-
heritance produces new incompatibilities

5. Exporting the mappings and blocking–point information to the Ili.

It should be noticed that it is important to export also blocking–point informa-
tion to the Ili in order to ease future correct exportation of tco’s information to
other wordnets, i.e. to prevent incorrect expansion of properties by inheritance.

Inside a particular wordnet, when reaching a blocking point, a subsumption link
can be considered as broken for ontological purposes –therefore, it will be assumed
that the conceptual chain only proceeds upwards consistently to the tco (not to
the hypernym synsets), via the Ili–records.

This process can be applied iteratively looking for suspicious synsets in Wn. In
that way, 38 synsets showing incompatibility between hand-assigned tco properties
were fixed.

The next step will be to check the set of Wn top beginners which only bear
information mapped via the tco–Lf table of equivalence (see appendix D) and fi-
nally to check synsets showing incompatibility between information directly mapped
via tco and information mapped via the tco–Lf table of equivalence. Finally, we
will check the remaining cases of incompatibility between tco manual and inherited
information.
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This realisation process was started inside the Meaning project and currently
it is still under development:

1. Fixing the properties of those synsets having contradictory tco properties. In
that way, tco assignments are fixed in the synset and its immediate relatives
(mainly hypernym and hyponyms). All these synsets are marked as ”hand–
checked”. The result is a correct tco information assigned to several synsets
as in the following example where, originally, non-agentive and non-intentional
00661612-v stiffening 1 was inheriting all of the 00660718-v process 1
properties as shown in table III.8

00660718 process 1
TCO Dynamic Agentive Purpose

00661612 stiffening 1
TCO Dynamic Cause

Table III.8: 00660718 process 1 and 00661612 stiffening 1

2. For those synsets having false Wn subsumptions, we will introduce a blocking
point between a pair of synsets. The result will be a list of blocking points,
e.g.: between synsets <stiffening> and <process>.

3. We keep record of tco–Lf erroneous equivalences, since they will be useful
in the future to detect more synsets with erroneous mappings. The result will
be a list of suspicious tco–Lf equivalences, e.g.: [tco:Agentive–Lf:ACT]

4. To study tco–sumo equivalences in such synsets. As in the previous step,
they can be useful in the future to detect more synsets with mistaken map-
pings. The result will be a list of incompatible tco–sumo concepts, e.g.:
[tco:3rdOrderEntity–sumo:Physical]

5. To inspect as well WN Domain assignments. The result will be a list of
doubtful WN Domain assignments, e.g. 00364173-n#play 3:ENTERPRISE

Following an iterative and incremental approach, the inheritance has been re-
calculated, the resulting data has been re–examined, and the eventual correct in-
formation has been again uploaded into the mcr thus overwriting the pre-existent
one.

Although such hand–checking is extremely complex and delicate, we expect the
task to be affordable since critical conflicts seem to concentrate in a workable layer
of synsets close to the higher part of the Wn hierarchy [Atserias et al., 2005].
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III.3.1.2 Realization of the Meronymy relation

Figure III.9 presents a partial view of Wn1.6 where solid lines represent direct con-
nections between synsets and dotted lines represent indirect or inferred connections.
Using the Wn browser provided by Princeton we can ask for the direct and inher-
ited PART-OF relations of a particular sense. A direct PART-OF relation occurs
between plant 2 and plant part 1, and inherited PART-OF relation occurs between
apple 2 and plant part 1. However, while for succulent 1, the browser provides an
inherited PART-OF relation to plant part 1, for cactus 1 the browser does not pro-
vides any inherited relation at all. Consider now the following simple questions:

1. Does a cactus have leaves?

2. Does an orchard apple tree have leaves?

3. Does an orchard apple tree have fruits?

Obviously, this simple questions only can be answered applying a systematic
inference mechanism on Wn [Harabagiu and Moldovan, 1998]. What should be the
correct behaviour of the mechanism for inheriting correctly the PART-OF relation
through the entire hierarchy of Wn?

11885124

 apple

 orchard apple tree

 Malus Pumila

11884768

 apple tree

00014510

 plant

 flora

 plant life

12399907

 leaf

 leafage

 foliage

12336213

 plant part

 plant structure

PART-OF

...

...
...

12399907

 apple

PART-OF11095905

 cactus

PART-OF

12382403

 fruit

12333666

 succulent

...

PART-OF

Figure III.9: Partial view of Wn1.6
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In order to test an inference mechanism on the PART-OF relation we imple-
mented the following inference rules:

(A has hyperonym B) ∧ (B has hyperonym C) ⇒ (A has hyperonym C)
(A has hyponym B) ∧ (B has hyponym C) ⇒ (A has hyponym C)
(A has mero part B) ∧ (B has mero part C) ⇒ (A has mero part C)
(A has hyperonym B) ∧ (B has mero part C) ⇒ (A has mero part C)
(A has mero part B) ∧ (B has hyponym C) ⇒ (A has mero part C)

The first two inference rules only represent the transitivity of the IS-A relation.
The same holds for the third with respect PART-OF relation. The fourth inference
rule will allow to inherit the PART-OF relation through an hypernym chain. For
example, the relation (cactus 1 has mero part plant part 1 ). The last inference rule
will allow to propagate a PART-OF relation through an hyponymy chain. For exam-
ple, the relation (plant 2 has mero part leaf 1). The resulting inferences derived by
this rule are not precise. In a sense, these are abductions. For example, a tree 1 do
not have as PART-OF all possible hyponyms of fruit 1. Moreover, the combination
of the last two inference rules will also allow to produce relations such as (cactus 1
has mero part leaf 1).

Notice that when applying these five simple inference rules we will obtain direct
answers for the first three questions mentioned above.

tree 1
DOMAIN botany

LF plant
SUMO FloweringPlant+
TCO Group+
TCO Living+
TCO Object=
TCO Plant=

Table III.9: tree 1 synset

When applying systematically these inference rules using an inference mecha-
nism on a particular synset we obtain large collections of new explicit and inferred
PART-OF relations. However, most of them are completely erroneous relations. For
instance, for tree 1 (table III.9 presents their main characteristics uploaded into the
mcr) we obtain 2,423 new PART-OF relations. However, most of them are erro-
neous because they are violating ontological properties. Taking a ramdom sample
of 100 proposed PART-OF relations only 37 were correct.
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For instance, we are obtaining in that way PART-OF relations for tree 1 cor-
responding to all body part 1 hierarchy (e.g. finger 1 ). This inference is produced
because of the following inference chain:

tree 1 —ISA→ life form 1 —PART-OF→ body part 1 ←ISA— finger 1

The problem now is how to solve this unwanted phenomena produced by the
structure of Wn. Table III.10 and III.11 presents, respectively, the main character-
istics uploaded into the mcr of finger 1 and apple 1.

finger 1
DOMAIN anatomy
LF body
SUMO BodyPart+
TCO Part+
TCO Living+

Table III.10: finger 1 synset

apple 1
DOMAIN botany
DOMAIN gastronomy
LF food
SUMO FruitOrVegetable+
TCO Part+
TCO Living+
TCO Comestible+
TCO Function+
TCO Natural+
TCO Object+
TCO Plant+

Table III.11: apple 1 synset

While an apple 1 can be part of tree 1, a finger 1 can not. Thus, we suggest
to use the tco properties associated to a particular synset as blocking marks to
impede further inference propagation beyond this synset. Both tree 1 and apple 1
share Living and Plant tco properties13. Moreover, when applying the inference
rules to propagate PART-OF relations we can also include the tco Part property
as a constraint.

13In a corrected version of the tco, tree 1 should have also the Natural property too
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In order to demonstrate the feasibility of this approach, we select those PART-
OF relations whose target has the tco property Plant from a total number of 2,423
new PART-OF relations for <tree 1>, obtaining 583 possible PART-OF relations.
Taking a random sample of 100 proposed PART-OF relations all of them were
possible PART-OF of a tree.

Finally, as a validation methodology, we also suggest performing a cycling process
tco revision/enrichment of the selected Bc by means of this powerful inference
mechanism. Obviously, as a side effect we can also obtain an enriched version of the
mcr having thousands of new validated relations.

III.3.2 Generalisation

A similar process can be devised in order to expand the knowledge into the mcr. In
this case, rather than expanding top–down the knowledge and properties represented
into the mcr, a bottom–up generalisation mechanism can be performed. In this
case, different knowledge and properties can collapse on particular Base Concepts
and ontological nodes.

III.3.3 Cross-Checking

The integration of all these resources into a single platform both demands and allows
for cross-checking. For instance, we can improve sumo labels and WordNet Domains
mappings by merging and comparing them.

Synset Word SUMO Domain

00003142-v exhale Breathing medicine
00899001-a exhaled Breathing factotum
00263355-a exhaling Breathing factotum

00536039-n expiration Breathing anatomy
02849508-a expiratory Breathing anatomy
00003142-v expire Breathing medicine

Table III.12: sumo vs. Domain labels

To illustrate how we can detect errors and inconsistencies between different types
of Som, we can see in the example in table III.12 that the nouns corresponding to
the sumo process Breathing has been labelled with ANATOMY domain, some verbs
with MEDICINE and some adjectives with FACTOTUM, when in fact, all these
senses correspond to different Part-of-Speech of the same concept.

On the other hand, once all the tco properties have been fully expanded as
shown in the previous section, the resulting Top Concept Ontology can be cross-
checked against the Lexicographer Files from Wn or against sumo and the realiza-
tion can take advantage if this cross-checking.
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Cross-checking can also show up differences in criteria. For instance, Animal
vs Plant for the synset 00911639-n phytoplankton 1 (sumo Plant+) and its direct
descendant 00911809-n em planktonic algae 1 (sumo Alga). It can also show incon-
sistencies due to the different granularity, as for Human vs Animal: i.e. all the
Hominids are considered animal by the Lexicographer File, but they are labelled as
Human by the Top Concept ontology (sumo Hominid+) or Human vs Creature:
all the creatures (mainly the descendants of imaginary being 1 imaginary creature 1)
are classified as person by the Lexicographer File, but as Creature by the tco.

Cross-checking could also be used to enrich each one of the resources. For in-
stance, there are synsets whose complete set of attributes of the tco can not be
inferred top–down from the hand-made assignments. Another way to automatically
enrich wordnet with more tco attributes is using the Lexicographer File. For ex-
ample, the synset 10960967-n first half only has the attribute Part. But its Lexicog-
rapher File is noun.time thus the associated tco property Time could be added.
Similar methodologies could be applied using sumo, e.g. first half, the sumo label
is TimeInterval+, which could also be mapped to the tco property Time.

Next two subsections will describe a basic cross-checking between resources on
Instances and Base Concepts.

III.3.3.1 Instance-Name Entities Cross-Checking

mcr contains instance information provided by IRST [Pianta et al., 2002] and sumo

[Niles and Pease, 2001] which was already related to Wn1.6, but also from [Alfonseca
and Manandhar, 2002] 6,961 instances in Wn1.7 automatically identified (7,033
Wn16 synsets).

Table III.13 shows the intersection between each pair of these resources. These
three resources together identify about 10,000 synsets as instances. However, only
1,994 synsets are identified as instances by the three resources. Merging all the
information about instances not only can help to complete (e.g. adding the class of
to the instance) and to correct each resource but also can help to establish a criteria
about what is an instance or help to build a richer NE classification.

IRST SUMO Alfonseca
IRST 4,097 2.048 2,063
SUMO - 5,561 3,177
Alfonseca - - 7,033

Table III.13: Instances overlapping for wn1.6 ILIs
III.3.3.2 BCs

The BalKanet Project enlarged the set of BCs defined in EuroWordNet adding first,
about 5,000 concepts BCs common across all Balkan languages with high frequency
occurrences, and second about 2,500 BCs to enrich the coverage of the wordnets in
order to fill potential gaps in the monolingual taxonomies.

Similarly, according to our pragmatic point of view, a concept is important if it
is widely used, either directly or as a reference for other widely used concepts.
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Importance is thus reflected in the ability of a concept to function as an anchor
to attach other concepts. This anchoring capability was defined in terms of three
operational criteria that can be automatically applied to the available resources:

1. the number of relations (general or limited to hyponymy).

2. being widely used by several languages

3. high position of the concept in a hierarchy

However, the definition of Base Concepts in EuroWordNet could not use the
sense frequency information currently available in the Princeton WordNet14. It is
possible to devise a simple and fully automatic method to derive the Base Concepts
from the information inside the mcr following the operational criteria defined above.
However, we consider that the Bcs should be general enough (being in the high part
of the hierarchy) but also particular enough (being in the lower part of the hierarchy)
to represent the main characteristics of each concept represented in the mcr.

#occur. #rel. offset synset

2338 18 00017954-n group 1,grouping 1
0 19 05962976-n social group 1

729 37 05997592-n organisation 2,organization 1
30 10 06002286-n establishment 2,institution 1
15 12 06023733-n faith 3,religion 2
62 5 06024357-n Christianity 2,church 1,Christian church 1

11 14 00001740-n entity 1,something 1
51 29 00009457-n object 1,physical object 1
1 39 00011937-n artifact 1,artefact 1

68 63 03431817-n construction 3,structure 1
50 79 02347413-n building 1,edifice 1
0 11 03135441-n place of worship 1,house of prayer 1,house of God 1

59 19 02438778-n church 2,church building 1

25 20 00017487-n act 2,human action 1,human activity 1
611 69 00261466-n activity 1

2 5 00662816-n ceremony 3
0 11 00663517-n religious ceremony 1,religious ritual 1

243 7 00666638-n service 3,religious service 1,divine service 1
11 1 00666912-n church 3,church service 1

Table III.14: Hypernym chain for all senses of the noun church in Wn1.6

Table III.14 presents the hypernym chain for all the senses of the noun church in
Wn1.6. For each synset we show the result of summing up all the sense frequency
counts appearing in SemCor (#occur)15 and the total number of direct relations
(#rel). Having calculated these two numbers for each synset (both representing the

14WordNet started to contain sense frequency information derived from SemCor and other ma-
terials in version 1.6

15For the rest of languages there is not available a sense tagged corpora for all words.
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first two criteria defined above), a very simple arithmetic operations can be devised
to obtain automatically a set of Bc for these particular synsets.

We suggest to study the following bottom-up approach to derive by automatic
means the whole set of Bcs. Following bottom-up the hypernym chain, we can
obtain for both, the number of occurrences and the number of relations, the first
local maxima of each synset. For instance, for church 1 the first local maximum
for #occur corresponds to organization 2 (with 729 occurrences), and for the #rel
corresponds to faith 3 (with 12 relations). For church 2 the first local maximum for
the #occur corresponds to construction 3 (with 68 occurrences), and for the #rel.
corresponds to building 1 (with 79 relations). Finally, for church 3 the first local
maximum for the #occur corresponds to service 3 (with 243 occurrences), and for
the #rel corresponds to religious ceremony 1 (with 11 relations). Obviously, both
criteria can also be combined. Furthermore, we suggest to collect all local maxima
for each leaf of the Wn hierarchies. All these local maxima can constitute the new
Base Concepts of the mcr.

III.4 Porting Process

Having all this types of different knowledge and properties completely expanded and
covering the whole mcr, a new set of inference mechanism can be devised in order
to further infer new relations and knowledge. For instance, new relations can be
generated when detecting particular semantic patterns occurring for some synsets
having certain ontological properties, for a particular Domains, etc. That is, new
relations can be generated when combining different methods and knowledge. For
instance, when several relations derived in the integration process have particular
confidence scores greater than certain thresholds. Moreover, without having inferred
extra knowledge in the porting process all the knowledge integrated into the mcr

can be ported (distributed) to the local wordnets.
All wordnets can gain some kind of new knowledge coming from other wordnets

by means of the porting process. A direct result of the upload/integration/porting
effort is that all information associated to the ILIs is automatically ported to the
other wordnets. Thus, MultiWordNet Domains are now available to the rest of
local wordnets, EuroWordNet Top Concept Ontology is also available for Italian
MultiWordnet and for English WordNet 1.6. Moreover, local relations can be ported
to the rest of wordnets. Thus, Italian and English Wordnet can be enriched with
all the new set of relations coming from EuroWordNet. In turn, Basque, Catalan,
Italian and Spanish wordnets can be extensively enriched with the large amounts of
selectional preferences acquired from English.

However, the Porting issues are out of the scope of this thesis. Although, the
detailed figures of the Porting Process as well as the issues rised by the three rounds
of this process during the Meaning project are available at [Atserias et al., 2004b].

The Appendix C shows two examples (for all the senses for the Spanish words
vaso and pasta) of the knowledge uploaded into the mcr and how this knowledge
could characterize all the different sense of those words.
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CHAPTER IV.

Process Integration in pardon

As the problems are new, we must disenthrall ourselves from the past.

Abraham Lincoln

IV.1 Introduction

As seen in the first chapter, nlu architectures are basically determined by both
Process and Knowledge integration. The architecture presented in this work, par-

don, aims to give a general framework in which different nlp tasks can be easily
formalized. So that, these different tasks can be tested separately or carried out
simultaneously.

pardon aims to explore the limits of the current nlp technologies, without
wrongly filtering partial solutions, or over-constraining the interaction between pro-
cesses/knowledge. We use Consistent Labeling Problem (clp) as the framework
to integrate different nlp processes and to apply any kind of knowledge (syntac-
tic, semantic, linguistic, statistical) at the earliest opportunity, while retaining an
independent representation for every kind of knowledge.

In previous chapters, regarding knowledge integration, we have adopted an hy-
brid and simple approach. No claim of completion have been made. Different
resources and knowledge repositories are different views of the language and the
world. None of them can claim to cover completely the richness of the language.
All these sources of knowledge do not need to be equivalent nor even compatible as
they will stand as independent information. Even when different knowledge/views
could become incompatible or contradictory, clp will also give us a natural way to
integrate them.
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Regarding process integration, clp is a framework that allows to fusionate also
processes, as a set of constraints. Thus, as long as we can relate each different source
of knowledge, and processes can be viewed as satisfying a certain set of constraints,
clp will allow to integrate both, knowledge and processes.

Then, nlp tasks will be regarded as an optimization problem, by means of trans-
forming the appropriate pieces of knowledge and processes in a set of constraints
and trying to find a solution that satisfies them to the maximum possible degree.

In order to integrate processes, since we aim that this architecture could be
applied to different nlp tasks, we need a knowledge representation as neutral as
possible, but at the same time, powerful enough to deal with complex nlp tasks
such as Semantic Interpretation.

A basic principle in semantics which guides most theories is compositionally. A
compositional theory of meaning will have a representation of the contribution of
each word and sub-phrase towards the meaning of the whole. The meaning of a
component is its contribution to the meaning of any complete sentence of which it
could be a part.

A flexible way to represent Semantic Interpretations is an Object Oriented
Semantics approach (e.g. ABSITY [Hirst, 1987]), which can be roughly seen as
an equivalent view of Object Oriented Programming paradigm but for semantics1.
Figure IV.1 shows a frame representation for the semantics objects cat and fish.
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Figure IV.1: Semantic Representation for cat and fish

In an Object Oriented Semantics approach, semantic objects are build Com-
positionally. That is, a syntactically well formed component of a sentence corre-
sponds to a semantic object.

The semantic object retains its identity even when it is part of a larger semantic
object. For example, a semantic representation for the sentence “The cat eats fish”
could be composed by three objects, the cat and fish objects of type animal and the
whole sentence object of the type eat-event which includes the two previous ones.

1Recently the Object Oriented Programming nomenclature has broken through nlu researchers,
(e.g. Dialog Objects in the RoBoDiMa Speech Dialog System toolkit [Quast et al., 2003])
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Figure IV.2 shows how the main wellformed syntactic structures of the sentence
relate to each part of the resulting semantic representation. In order to represent
the semantic interpretation of a sentence we have to represent the semantic objects
and the relations between those objects. A lexicon maps the input (e.g. words or
phrases) to their semantic objects which permits accessing any knowledge related
to the word.

Inside pardon we will adopt this “neutral” compositional object-oriented ap-
proach. pardon uses a particular frame-like representation as the knowledge struc-
ture to represent objects. pardon represents the relationships between objects in
a dependency-like style, through models and roles. An object could have several
models associated. However, an object can use only one of these models to combine
itself with other objects (composition). We will say that, those objects, which the
model combine, are playing a role in the model. Objects are triggered by the input
(e.g. words) and are in charge of allowing access to all their related knowledge.
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Figure IV.2: Example of compositionally
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IV.2 pardon’s Architecture

pardon’s architecture is based on the idea of compositionally. An element combines
itself with other elements to build a new element. In most cases the new element
shares or contains the representation of the combined elements. Elements can not
be freely combined. The correct combinations of elements are determined by models
and these models are associated to the initial elements.

Thus, the compositional system is formed by a set of combinatorial patterns or
rules (models) associated to initial elements (hencefore initial objects). The system
has to establish not only which combination of objects (derivational sequence) can
be correctly performed to cover the whole sentence, but also which ones are more
plausible than the others. We have restricted the combinational process to best
suit the kind of models we applied in the two test tasks, but other kinds of model
matching and combination criteria could be established and formalized in different
ways inside pardon’s architecture.

A frame-like semantic representation, as well as the compositional and pattern
matching process of pardon’s architecture, could be formalized as a Clp. This
formalization can be done in many different ways. Different formalization could
lead to different performance or even to converge to different solutions when using
algorithms that do not assure the global optimization. Unfortunately, there are
few works on the impact of the different possible modelizations in the performance
[Borrett and Tsang, 1996] and besides for empirical results, it is not clear which
general properties must hold a good formalization.

Thus, pardon’s Architecture is similar to a rule-based system and has three
main components:

• Knowledge Representation: How the information, either for partial ana-
lysis or the whole sentence, are represented.

• Model Application: In which conditions and how a model is applied. In
most cases, the application (or learning) of models involves the definition of a
similarity function, a distance or some kind of unification process or pattern
matching. These mechanisms allow to compare the models and the input. So
that, several parts of the model/pattern could be identified in the input.

• Inference Engine: How and when it is decided to apply a model.

Next sections will present this three components and how they can be formalized
in the clp framework. In order to illustrate the nature of the architecture we will
use a simple example simulating the behaviour of a well-known rule-base system,
the application of a Context Free Grammar (CFG). In this example, the input of
the system will be words and the output a parse tree.
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IV.3 Knowledge Representation in PARDON

A frame-like representation can be straightforwardly formalized in a clp by repre-
senting each slot-value as a pair of variable-value. When the attribute contains a
complex structure, we will use a reference. Figure IV.3 shows the equivalent csp

representation for the frame cat in figure IV.1).

Variable Values
c1.pos { NN1 }
c1.head { cat }
c1.sense { cat#n#1 }

Figure IV.3: Variables associated with the frame-like representation of cat

However, most of the problems which are naturally modelled as a clp don’t have
and implicit structure. We will use a kind-of dependency representation between
objects, ’flattening’ our problem. The combination of objects by means of a model is
represented using two variables, a variable named model which represents the model
which is applied and another variable named role which represents the dependency
between the two objects. There is one special model, named none, to represent the
null-model (that is, the no application of any model) and one special role, named
top, to represent the null-role (that is, the object does not take part in any model).

Variable Values
c1.pos { NN1 }
c1.head { cat }
c1.sense { cat#n#1}

c2.pos { VVZ }
c2.head { eat }
c2.sense { eat#n#2 }
c2.model { transitive }
c2.agent { c1 }
c2.patient { c3 }

c3.pos { NN1 }
c3.head { fish }
c3.sense { fish#n#2 }

Variable Values
c1.pos { NN1 }
c1.head { cat }
c1.sense { cat#n#1}
c1.model { NONE }
c1.role { agent.transitive.c2}

c2.pos { VVZ }
c2.head { eat }
c2.sense { eat#n#2 }
c2.model { transitive }
c3.role { TOP }

c3.pos { NN1 }
c3.head { fish }
c3.sense { fish#n#2 }
c3.model { NONE }
c3.role { patient.transitive.c2}

Figure IV.4: Two different clp formalization of The cat eats fish

Figure IV.4 shows two different clp representations for the “The cat eats fish”,
on the left using references and on the right using two special variables model and
role for each object.
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In order to identify a role from a model label we need a triplet (role, object,
model). For instance, the role agent of the transitive model for the object eat is
represented as (agent, eat, transitive).

Since a clp always assigns a label to each variable; we will use the two null-labels
defined previously: none for the model variables (objects which do not use a model,
usually leaf semantic objects with no sub-constituents) and the label top for the
role variables (objects not playing a role in the model of a higher constituent, e.g.
the sentence head).

In the CFG example, first a “lexicon” maps the input to our initial object. For
this simple task, our initial objects will be simple PoS tags. For the current example,
we will us a simple lexicon (shown in figure IV.5), establishing that cat and fish could
be both nouns (N) and verbs (V) and also that the only valid PoS for eat and the
are verb (V) and determiner (D) respectively.

Each one of these initial objects could have different models (in this case we will
associate CFG rule to PoS). For the current example, we will us a simple grammar
(shown in figure IV.5), with two rules. The first one (named MNP) establishing
that a Noun acting as head of this model could be combined with a determiner (D)
to build a noun phrase (NP). The second one (named MS) establishing that a verb
acting as head of this model could be combined with two different noun phrases to
construct a sentence (S).

Lexicon
Word PoS
cat N, V
eat V
fish N, V

CFG Grammar
Head Id CFG Rule
N MNP D, N =⇒ NP
V MS NP1, V, NP2 =⇒ S

Figure IV.5: A simple Context Free Grammar

NP NP

D N D N

The D cat N, V eats V fish N, V

Figure IV.6: Representation of the possible instantiations of the rule D, NP =⇒ NP

Being a CFG, in order to fill a role, we will impose to the object to have the same
PoS than the role. For instance, following the current example, figure IV.6 shows
graphically the possible applications of the rules for the example sentence. That is,
the object associated to The could fill the role D (dash line) of the model D, N =⇒
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NP anchored (thicker line) in cat but also the role D of the model anchored in fish.
Figure IV.7 shows the final clp representation.

Variable Values
c1.pos { D }
c1.head { The }
c1.model { NONE }
c1.role { TOP,

D.MNP.cat,
D.MNP.fish }

Variable Values
c2.pos { N, V }
c2.head { cat }
c2.model { MNP, MS }
c2.role { TOP,

NP1.MS.eat,
NP2.MS.eat }

Variable Values
c3.pos { V }
c3.head { eat }
c3.model { MS }
c3.role { TOP }

Variable Values
c4.pos { N, V }
c4.head { fish }
c4.model { MNP, MS }
c4.role { TOP,

NP1.MS.eat,
NP2.MS.eat,
NP1.MS.cat,
NP1.MS.cat }

Figure IV.7: clp representation for CFG parsing of “The cat eats fish”

IV.4 Role and Model Application

In order to see whether a model can be applied or not, we should determine which
combination of objects could be used to fill the model’s roles (hencefore instantiate).
First we will establish which roles an object can play in isolation, that is, regardless
which objects fulfil the other roles of the model. For instance if our model needs a
number agreement between two roles we will initially oversee this constraint since
it involves knowing which object is instantiating the other role.

Regarding a role and the possible object that could fill it, we distinguish three
different kinds of attributes:

• Compulsory: The object attribute must match the role attribute.

• Optional: The object will be considerated as a possible filler of the role, even
though, the object attribute do not match the role attribute. The matching
function will penalise it.

• Ignore: The object could contain information that the match function must
not take into account (e.g. an attribute containing the description of the role
or its name). We do not consider these attributes at all.

We define the function match(object, role) to determine whether an object fills
a role in isolation. That is, if an object matches all the compulsory attributes of the
role without considering the objects that could fill the other roles of the model.
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In order to choose between different possible fillers for a role, we need a finest
function to measure how well an object fills a role, and not only whether an object
can fill a role or not, as the match(object, role) function does. We named this func-
tion sim(object, role) and range the similarity to [−1, 1], that is, from incompatible
objects to full compatible objects. Although other properties are desirable (such as
to be a distance), we will not make any additional restriction on the sim(object, role)
function.

Complex multiple slot match functions could be formalized in this framework as
a sim measure. For simplicity, we will use a matching/similarity measure between
a role and an object as the normalized sum of the similarity between the values of
all the attributes:

sim(object, role) =

∑

a∈Atts sim(object.a, role.a)

|Atts|

For instance, in the current example of a CFG where the syntactic category is
the only attribute, we allow an object to fill a role if both have the same category
(Compulsory). Thus, we define the matching function as

match(object, role) =

{

1 if object.catg = role.catg

−1 otherwise

}

In this simple example, as the category is the only attribute, the sim function
will be the same than the match function.

Using this matching function we obtain the set of possible role–objects instanti-
ation shown in Table IV.1.

Role Object
D.MNP.cat { The }
D.MNP.fish { The }
NP1.MS.eat { cat, fish}
NP2.MS.eat { cat, fish}
NP1.MS.cat { cat, fish}
NP2.MS.cat { cat, fish}

Table IV.1: Possible clp Assignments using the match function

Once the possible fillers for each role are determined, we should choose which
ones could be used together to instantiate the full model. For instance, which
pairs of objects hold the number agreement, that is, both objects filling the roles
simultaneously have the same number. In our example, a typical CFG will force the
element to be contiguous and in a determined sequential order. Thus, in the current
CFG example The could not fill the role D from the fish’s MNP model.

Obviously, the correspondence between the input sentence and the models is not
usually perfect. The applicability conditions of the models could vary greatly, e.g.
we could relax that conditions and allow the non-contiguity of the elements, or even
allow changes in their order.
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Moreover, the application of a model does not only need to formalize all the
possible combination of objects that can instantiate a model but also to establish
which is the best instantiation among all the possibilities. This measure mostly
depends on the kind of pattern matching implicit in models we are considering for a
particular task. For instance, a particular instantiation of a model can be penalized
according to different criteria, e.g. the number of gaps, the unordered fillers, the
number of optimal roles that are not instantiated, etc.

Approximate pattern matching techniques based on edit operations (e.g. [Wang
et al., 1994], [Shasha et al., 1994]) are the most commonly used to deal with inexact
or error-tolerant methods. One of the main drawbacks of the tree-edit matching
approaches is the difficulty to integrate them with other types of knowledge. How-
ever, [Torsello and Hancock, 2003] prove that it is possible to approximate a tree
edit distance matching using a more general framework, that is, clp. Thus, clp

will allow us to modelize different kinds of model application (pattern matching),
e.g. unorder, gaps, optional roles, and also integrate it with any other processes or
knowledge we can formalize as a set of constraints.

In the current example we will extend our CFG formalism to allow optional roles
in a model, e.g. D>, N =⇒ NP will stand for allowing an optional role D.

IV.5 Model Application Constraints

We should stablish a set of constraints to ensure the right application of roles and
models in isolation (model instantiation Constraints).

In order to formalize this framework we will use the following conventions:
Objects is the set of all possible objects, Roles is the set of all possible roles and
Models is the set of all possible models. Regarding a particular model, Roles(m)
where m ∈ Models, stands for the set of all the roles of a particular models. Simi-
larly, regarding a particular object, Roles(x) where x ∈ Objects, stands for the set
of all the models of a particular object.

Constraints are represented as follows: [A = x] ∼w [B = y] denotes a constraint
stating a compatibility degree w when variable A has label x and variable B has label
y. The compatibility degree w may be positive (stating compatibility) or negative
(stating incompatibility). For simplicity we will also use the symbol � to denote
incompatibility.

According to the particular nature of the models used, constraints should be
added for:

• Role Support: Establishing how likely is a particular instantiation of a role
given the current context, i.e. taking into account due the static and dynamic
properties of the possible filler or how likely is its model.

• Model Support: Establishing how likely is a model due to the possible (or
the lack of) instantiation of its roles.

• Model Inconsistence: Establishing when a model is inconsistent due to the
possible (or the lack of) instantiation of its compulsory roles.



70 Process Integration in pardon

IV.6 Inference Engine

In the previous section, we have seen how the application of a model can be formal-
ized as a clp. However, a model is not only applied in isolation, the object resulting
of the application of a model could also be used by other models.

For instance, in the current example, the model NP1, VP, NP2 =⇒ S can only
be applied if we have previously applied the models associated to cat and fish to
build two NP objects.

Thus, a production rule system (like CFG) requires some kind of inference engine
to manipulate the rules (models) and decide which ones are ready to apply. That
is, which ones have a set of objects that correctly match their roles.

Some constraints must be included to ensure the right application of the models,
that is, the correct identification of each element in a model, but also to ensure the
correct compositional process. However, it is not an easy task to model a rule-based
system inside a clp. A clp is mostly based on knowing in advance the search space,
that is the whole set of variables and their possible values (domain).

In a production rule system, each time we apply a model a new object is gener-
ated. Then, this new object could be used for other rules to generate new objects
and so on. Thus, to explicitate all the possible objects a model can use, we would
have to explicitate all the possible instantiations of the models. In a general case,
it is neither practical nor possible to calculate this closure.

The standard approach to implement a production rule system is to store the
partial set of objects in a temporal memory and design strategies to decide which
rule to apply next. These strategies try to avoid backtracking and the generation
of partial results which are not present in the final solution. A similar strategy has
been applied to dependency parsing [Menzel, 1998], [Schröder, 2002].

There are some other alternatives, for instance, adding new variables and values
to our clp (that kind of problem are called dynamic csp/clp) as new objects are
generated in the working memory. Another possibility would be to restrict the
architecture so that the closure of the possible models that could be applied on a
particular sentence can be calculated.

We have chosen the last possibility. That is, to reduce the computational cost
of this closure by restricting our architecture to: associate models only to the initial
set of objects, and allow the application of only one model per object.
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When several objects combine themselves using a model, a new objects repre-
senting the result should be created. We constraint these new objects to not have
models, avoiding the recursive application of models. Taking into account that our
main task will be Semantic Parsing, it seems more practical to adopt this kind of
“lexicalized”-models, and allow models only for the objects associated to the input
sentence. On the other hand, regarding the number of models per object, if only
one model per object is allowed, only one of the next-level objects will be present
in the final solution. Adding these two restrictions, the number of objects (partial
solutions) than can be part of the final representation is 2 ∗ n being n the number
of initial object.

Figure IV.8 shows the closure of all possible instantiations of the models and
their recursive application (derivational sequences). Each initial object (in blue) has
several models associated (thicker lines). These models have several roles (boxes)
which could be filled by different objects (dashed lines) in order to generate a new
object (circles). These new generated object could also be applied to fill the roles
of other models.

c7::S c8::S c9::S

NP1 V NP2 NP1 V NP2 NP1 V NP2

c5::NP c6::NP

D N D N

c1::The D c2::cat N, V c3::eats V c4::fish N, V

Figure IV.8: A complete scheme of all possible derivations
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IV.7 Derivational Sequences

Although, we have ensured the correct application of a model in isolation, we also
need to ensure the correct combination of the models. That is, we should ensure
that the possible application of the models is a consistent derivational sequence. We
will establish a set of constraints (model combination constraints) to ensure the
correct combination of the models.

IV.7.1 Model Combination Constraints

The combination of models in pardon is ruled by the following four axioms:

• Object Instantiation Uniqueness:

The first axiom constraints an object not to fill more than one role, otherwise
we could reach a derivational structure like the one shown in figure IV.9, where
the NP derived from the cat is instantiating simultaneously to NP1 and NP2

of the model anchored in eats.

[cx.role = a] � [cx.role = b] ∀x ∈ Objects ∀a, b ∈ Roles(x) | a 6= b

S

NP1 V NP2

NP

D N

The D cat N, V eats V fish N

Figure IV.9: Violation of the Uniqueness Object Instantiation
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• Role Uniqueness: Only one object can instantiate a role. This constraint
avoids situations like the one shown in figure IV.10, where the object associated
to the cat and to fish are filling the same role. This axiom does not mean that a
semantic object can play a unique semantic role (which is not necessary true).
This restriction enforces that the model should establish this co-indexing and
has a unique element (role) in the model.

[cx.role = a] � [cy.role = a] ∀x, y ∈ Objects ∀a ∈ Roles | x 6= y

S

NP1 V NP2

NP NP

D N D N

The D cat N, V eats V fish N

Figure IV.10: Violation of Role Uniqueness

• Model Uniqueness: We restrict the models associated to an object to be
incompatible among them. For instance, we avoid derivational sequences such
as the one shown in figure IV.11, where the object cat is using two of its models
NP, V, NP =⇒ S and D, N =⇒ NP simultaneously. This constraint ensures
that an object only applies one of its models. For instance, that either the
object cat is using the model NP, V, NP =⇒ S or D, N =⇒ NP but not both.

[cx.model = a] � [cx.model = b] ∀x ∈ Objects ∀a, b ∈Models(x)
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S S

NP1 V NP2 NP1 V NP2

NP NP

D N D N

The D cat N, V eats V fish N

Figure IV.11: Violation of the Model Uniqueness

• Role Inconsistence: A role can not be filled if the object which the model
is anchored to is using another model. For instance, in figure IV.12 where the
object fish is filling the role NP2 of the model MS anchored in cat (dash line)
while the object cat is applying another model (MNP) to combine itself with
the object The.

∀x, y ∈ Objects (r, x, ma) ∈ Roles(y) mb ∈ Models(x) | ma 6= mb [cy.role =
(r, x, ma)] � [cx.model = mb]

S S

NP V NP NP V NP

NP NP

D N D N

The D cat N, V eats V fish N

Figure IV.12: Role Inconsistence
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These four axioms ensure the right combination of the models, but the architec-
ture also needs to explicitate a measure of the goodness of the resulting combination.
Thus, in order to evaluate the goodness of the application of a model, different prop-
erties can be measured, for instance, how well each object fits the role, the Model
consistence, that is how the goodness of a particular instantiations of the roles of
a model affect the good application of the model, or the Role Support, that is
how the goodness of the whole instantiation of a model affect the goodness of the
particular instantiation of a role.

IV.7.2 Amalgamating the Search Space

In real NLP applications, reducing the search space is an important issue, for in-
stance, Stephen Beale [Beale, 1996] shows that the number of possible semantic
analysis for an average sentence in the Mikrokosmos Machine Translation system
is about 56 millions. It becomes even harden when we have to deal not only with
hard constraints (staying yes or not) but also with soft Constraints (preferences or
heuristics) or even with inconsistencies in our knowledge. For instance, assuming
we consider all free combinations of objects taking only into account the PoS, we
can obtain 196 different parse trees for our example sentence.

The proposed architecture could be formalized as a Constraint Satisfaction Prob-
lem and solved using optimization techniques (in a similar way than [Beale, 1996]).
The main problems that we still need to face are the reduction of the search space
and how to deal with hard Constraints (constraint that must be satisfied) and soft
Constraints (preferences or heuristics).

Even with these simplifications, the amount of objects that can be generated
is large, either due to the application of different models, or due to the different
instantiations of the same model (the use of non-exact pattern matching techniques
could multiply greatly the number of possible instantiations of a model).

Each of these possible applications of a model will create a different resulting
object, which has to be taken into account when applying the models from other
objects. The more we have and the looser our model application is, the more different
objects could be generated. The exponential enlargement of our search space could
make our approach inviable in practice.
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id Object Gaps Un. Opt.

c5.1 D:(NONE) N:(cat) N N Y

c5.2 D:(The) N:(cat) N N N

c6.1 D:(NONE) N:(fish) N N Y

c6.2 D:(The) N:(fish) Y N N

c7.1 NP1: NONE V:eat NP2: NONE N N Y

c7.2 NP1: (D:(NONE) N:(cat)) V:eat NP2: NONE N N Y

c7.3 NP1: (D:(The) N:(cat)) V:eat NP2: NONE N N Y

c7.4 NP1: NONE V:eat NP1: (D:(NONE) N:(fish)) N N Y

c7.5 NP1: NONE V:eat NP1: (D:(The) N:(fish)) N N Y

c7.6 NP1: (D:(NONE) N:(cat)) V:eat NP2: (D:(NONE) N:(fish)) N N Y

c7.7 NP1: (D:(NONE) N:(cat)) V:eat NP2: (D:(The) N:(fish)) Y Y Y

c7.8 NP1: (D:(The) N:(cat)) V:eat NP2: (D:(NONE) N:(fish)) N N Y

c8.1 NP1: NONE V:fish NP2: NONE N N Y

c8.2 NP1: (D:(NONE) N:(cat)) V:fish NP2: NONE N N Y

c8.3 NP1: (D:(The) N:(cat)) V:fish NP2: NONE Y N Y

Figure IV.13: Consistent Partial Objects generated from “The cat eats fish”

For instance, for the object resulting of the application of the model MNP (that
is, D>, N =⇒ NP) for the object c5 (that is, cat) we can generate two different
objects c5.1 (D:The N:cat) and c5.2 (D:NONE N:cat), doubling the number of
possibles objects that can be generated in the second level (that is the models using
NPs).

Figure IV.13 shows all the correct objects that can be correctly generated from
the current example, the Gaps column indicates whether stands the models are dis-
continuous, Un. indicates whether there are unordered elements, and opt whether
optional roles are allowed. That is, without taking into account all of the inconsistent
combinations that can be tried.

Even if we use robust pattern matching techniques, we can not expect to be
always able to generate an object that covers the whole sentence. Thus, pardon

should incorporate a mechanism to combine all the generated objects plus the initial
ones. Figure IV.14 shows some of the object combinations that can be tried.

Object Combinations
c1 c2 c3 c4
c1 c5.1 c3 c4
c5.2 c3 c4
...
c8.2 c3
c8.3

Figure IV.14: Some of the different possible solutions for the “The cat eats fish”
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IV.7.2.1 Structural Constraints

A set of axioms is needed to ensure the correctness of the partial object combination
(structural constraints). This is done through the NONE model and the TOP
role, and allows us to obtain a solution for the whole sentence even if this solution is
a combination of various objects (in a similar way to return a partial parsing instead
of nothing when a full parse tree can not be obtained):

• TOP Uniqueness: There is only a Top. That is different assignments of the
label TOP are incompatible.

[cx.model = TOP ] � [cy.model = TOP ] ∀x, y ∈ Objects, x 6= y

• TOP Existence: There is at least one TOP.

∃x ∈ Objects [cx.model = TOP ]

• No Cycles: Two assignments forming a cycle are incompatible. This ensures
that an object can not take part of its own model. Only direct cycles are
checked.

[cx.role = (r, y, my)] � [cy.model = mx] ∀x, y ∈ Objects mx ∈ models(y)
my ∈ models(x)

• NONE Support: The NONE model is compatible with the inexistence of
any role assignment of the semantic object models.

[cy.model = NONE] ∼ @ [cy.role = a] ∀y ∈ Objects

IV.7.2.2 The Amalgamated Representation

In order to soften this combinatorial explosion, given an initial object, we will amal-
gamate the representation of all the possible objects which could be generated using
the models associated to the same initial object. Thus, meanwhile an object uses
its models to combine itself with other objects, some of the resulting object values
are determined (in a similar way of Hearst’s Polaroid Words [Hirst, 1987]). Roughly
speaking, pardon combines objects from one level in order to build the objects
corresponding to the next level of the task under consideration but the resulting
object is calculated simultaneously to the task of determining which models are to
be applied to find the best solution.

The formalization proposed will relax this sequential application of models by
means of calculating which roles can play the generated object regardless the par-
ticular instantiation of the model’s roles. That is, calculating the closure of the
possible values of the slots of the object that can be generated applying the model.

It is our believe that since the object resulting from an application of a model
is a function of all the objects involved, many of this possible combinations (and
the different resulting objects) share the same properties. That is, we can follow on
the application of models without knowing the exact application of the model (that
is, for instance without taking all the PP attachments decisions). For example in
the sentence, “John saw Mary on the hill with a telescope”, the different resulting
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semantic object covering the whole sentence for the four different possibilities of
attaching “on the hill” or “with a telescope” will share the event see(John,Mary).
Thus, in a more complex sentence like “Do you mean that John saw Mary on the
hill with a telescope” we can overcome the impact of these decisions and see how
the common resulting object see(john,mary) fits a role in another model (e.g person
- mean - statement). Then, as we take decision of these local attachments, we can
reconsider how well this new object fits on a model.

The calculation of the closure of the object’s slots over the set of models will be
easier to calculate restricting our formalism with types as in Attribute-Logic Engine
(ALE)2 [Carpenter, 1992]. Although it could also be roughly calculated as in the
following algorithm 1:

Algorithm 1 Pseudo code of the algorithm to calculate the closure of the object’s
Attributes

for each initial object do
AOi.Att← Oi.Att

while a rule can be applied do

for each new instantiation of rule Ri anchored in Oi do

AOi.Att← AOi.Att ∪ applyRule(Ri).Att

end for

end while

end for

In a general case, the calculation of the slot’s closure could be as computationally
hard as calculating all the possible combinations of models. However, in most NLP
tasks, the relevant properties of the generated object, that is, the properties used to
know if this object can be used in another model, do not depend on the instantiation
of the roles. Moreover, it is not necessary to calculate the exact closure, any supraset
of the closure can be used, although in the limit we will explore the whole search
space of combinations in which a object can play any role, because nothing is known
in advance about their slots.

In the current example of a CFG, restricting the closure of the all the objects
the set of model can generate is not computationally hard to calculate. The amal-
gamated objects will have only one attribute catg. For instance, in the current
example, cat has only two models and the only relevant slot to fill other roles is catg.
Regarding the slot catg, all the possible objects that can be generated can be either
NP or S. In order to calculate the closure it has also to be taken into account that
an object may not use any of their models, thus the closure regarding the slot catg
must include the initial values; which will result in { N, V, NP, S }.

2http://www.cs.toronto.edu/ gpenn/ale.html
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The figure IV.15 shows the clp after applying the algorithm described above to
calculate the closure over the models associated to the initial objects.

Variable Values
c1.catg { D }
c1.role { TOP, D.MNP.c2, D.MNP.c4 }
c1.model { NONE }

c2.catg { N, V, NP, S }
c2.role { TOP, NP1.MS.c2, NP2.MS.c2 , NP1.MS.c3, NP2.MS.c3 }
c2.model { NONE, MNP, MS }

c3.catg { V, S }
c3.role { TOP }
c3.model { NONE, MNP, MS }

c4.catg { N, V, NP, S }
c4.role { TOP, NP1.MS.c2, NP2.MS.c2 , NP1.MS.c3, NP2.MS.c3 }
c4.model { NONE, MNP, MS }

Figure IV.15: clp representation

Once we have restricted which roles could play any of the possible objects a model
can generate (regardless the particular combination of object that instantiates the
roles), a set of constraint should be added to ensure that the set of selected values
is consistent with the application and instantiation of the models.

For example, the following constraint will assure that if the model selected for
c1 is MNLP the atribute catg will be NP [c1.model = MNP] ∼+ [c1.catg = NP].
Similar constraints will be added for the rest of the models. In that example, we
will need another constraint suporting the selection of the catg S in case the model
MS is selected for c1: [c1.model = MNS] ∼+ [c1.catg = NS]

IV.7.2.3 Attribute Propagation/Percolation

The closure in a CFG, although depends on the complexity of the grammar, is easy
to calculate because all the resulting objects share the relevant slot (the syntactic
category). However, having more complex models, a relevant slot could depend on
the object that fills a role. This not only increases the complexity of the closure but
also the clp formalization as we have to establish constraints to propagate these
attributes.

More complex models, as the model in figure IV.16, which includes a re-entrancy
in the attribute Sem, need a more complex representation inside our clp formula-
tion.

We can distinguish two types of attributes in the object resulting from the appli-
cation of a model, Static attributes which are known before applying the model, such
as the attribute catg in the model figure IV.16, and Dynamic attributes which can
only be calculated when all of at least some of the roles that instantiated the model
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Figure IV.16: A Complex Model with Propagation of Attributes

are known, as the attribute Sem in figure IV.16 which can only be determined when
the slot Sem of the role head filler is known. The reentrancy implied in Dynamic
attributes needs additional mechanisms to be added to our clp formulation.

These dynamic attributes have to be consistently propagated through the compo-
sitional process in order to update how similar is the current common representation
of exclusive objects and a role (that is, sim(obj, role)).

The mechanism to ensure this consistency consists of adding variables to repre-
sent the dynamic attributes (Obj.attribute) and restrictions to propagate the labels
consistently through the instantiation of the model. Bellow we show the constraints
which propagate a dynamic attribute f defined in a model m of an object O as
[f = X.f].

• attribute from a complex object

[O.f = l] ∼+ ∃ [X.role = (r, O, m)] ∧ [X.f = l] ∀l ∈ X.f,
e.g:
[group.sem = Animal] ∼+ [cat.role = (head,groupof,group)] ∧ [cat.sem =
Animal]

• attribute from the basic object:
[O.f = l] ∼+ ∃ [O.model = NONE] ∨ [BOA.f = l] ∀l ∈ A.f,
e.g:
[Group.sem = Group] ∼+ [Group.model = NONE] ∨ [BOGroup.sem = Group]
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IV.7.2.4 Attribute Representation

Each attribute in the semantic object could be represented as a variable in the clp.
However, most of the attributes have a unique value or do not have any constraint
which could select a value for this attribute among their possible values. That
is, most of the attributes/variables that determine how well an object will fit a
role will not change (that is, they are Static). Those attributes of the amalgamate
representation of an Object which can change or select a value conform the Dynamic
part. Then, the object attributes can be split into static and dynamic:

O.Att , O.StaticAtt ∪O.DynAtt

Thus, also a great part of the constraints about how likely is that an object plays
a role can be calculated only once, at the beginning of the process.

For instance, to calculate how likey is that the object c2 (cat) play the role
NP1 of the model MS for the object c3 (eat), sim(c2, NP1.MS.c3) will return how
suitable are the amalgamated objects (that is considering all the possible values for
each attribute of the amalgamated objects).

The function sim measures the similarity between an Object and a Role. sim

could be also split in two, a static simstatic and a dynamic part simdyn:

sim(R, O) , simdyn(O.DynAtt)⊗ simstatic(O.StaticAtt)

Since O.StaticAtt does not change, the function simstatic(O.StaticAtt) could be
calculate only once (e.g. when the clp is built).

In a similar way in the amalgamated object representation we can split the
similarity measure in two parts. The one involving only static attributes, that
do not change, (simstatic) and the dynamic part (simdyn) which has to take into
account the current state of the amalgamate objects (represented as the weight
of the different assignments in the clp). In order to calculate this dynamic part
we can establish a set of constraints which establishes the similarity between the
current state of the amalgamate object and the role:

[AOi = R] ∼simstatic(AO,R)

[AOi = R] ∼simdyn(AO,R) [AOi.Att1 = v1] ... [AOi.Attn = v1]
...
[AOi = R] ∼simdyn(AO,R) [AOi.Att1 = vk] ... [AOi.Attn = vm]

For instance, in the current example, the constraint:
[cat.role = NP1.MS.Eat] ∼+sim(...) [cat.Sem = Animal]
will ensure that the similarity measure takes into account whether we are selecting
the Animal sense though the Group of Cats or not.

Only Dynamic attributes need to be represented in the clp, as all the functions
regarding the Static ones could be transformed into constant expressions in order to
optimize the calculations.



82 Process Integration in pardon

IV.8 Formalization as a clp

As seen in the previous subsections, pardon’s framework can be formalized as
a clp. Once a nlp task is modelled as a clp using pardon, it can be solved
using well known optimization methods (e.g. the relaxation labeling algorithm)
to find the most consistent solution. A clp with weighted constraints does not
distinguish between hard and soft constraints. Some hard-constraint are implicit in
the formalization and thus can not be violated (e.g. role unicity), some part of the
hard constraints can be applied during the clp formalization to filter out labels (e.g.
matching constraints between the role and objects), and the remaining are relaxed
to soft constraints giving to them an arbitrary large (infinite) weight to force the
system to satisfy them on convergence.

However, as we will see later on the experiments, using a relaxation labeling
technique, if the final state do not hold all these constraints (because we have con-
verged to a local maxima or there is no state which could satisfy all the constraints)
a mixed partial or multiple models could be combined in the solution.

We are not concerned about the well formedness of the input and the models.
We are dealing with a communication event, where there is no doubt that, even
when the utterance is not well formed and contains any kind of error, there is an
intended meaning. Thus, from our point of view, robustness in nlp means to find
always the more reliable solution, even if the input is not well formed or the models
are incomplete or inconsistent. Thus, we allow to violate hard constraints if there
is no other way to find a possible solution, codifying them as soft constraints with
a high weight.

On clp the different assignments of a variable are incompatible. Thus, using
the formalization proposed in this chapter the Object Instantiation Uniqueness and
Model Uniqueness constraints are ensured by the algorithm itself (as the labels of a
variable are incompatible among them).

The next step in the formalization of pardon as a clp is to establish the possible
assignments, that is, to determine which the possible models are, and which roles
of these models can be played by the initial objects. Thus, we have to determine
which of the restrictions expressed by the model must hold (Hard Constraints) and
which constraints can be softened in order to find a solution (Soft Constraints), (e.g.
selectional preferences, heuristics or knowledge that we know could be inconsistent
or incomplete).

When formalizing the problem, the models that can not fill any of their compul-
sory roles should not be taken into account and neither should all their associated
roles (and their possible assignments). The hard-constraints involved in the identi-
fication of roles are applied in the function match. Using this function, we would
determine whether an object could play a role (represented as a possible assignment)
or not.
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The algorithm 2 describes in pseudo-code the general procedure for building the
clp once the initial objects are created:

Algorithm 2 Algorithm for determining the set of possible roles for an object

for each model M associated to a initial object do
add <M,A> to the activeModels list

end for
for each <M,A> in the activeModels do

if all the compulsory roles of M have at least one match then
for each role R of model M do

for each object SO do
if match(SO,R) then

add SO as possible player of role R
end if

end for
end for

end if
end for

One of the main advantages of a clp is that it can be enriched with arbitrary
sets of task-specific constraints (e.g. statistical information, selectional preferences)
which enforce the application of the models or assure other preferences or desirable
characteristics of the solution (e.g. non crossing of syntactic dependencies).

Once the clp is build, The relaxation labeling algorithm can be applied to find
a local maxima that satisfies all the constraints to a maximum degree.

IV.9 Conclusions

In this chapter we have presented the pardon’s architecture, which similarly to a
rule-based systems is based on the idea of compositionally. An element combines
itself with other elements to build a new element. We have formalized as a clp

the three major components of pardon’s Architecture, that is the Knowledge
Representation, the Model Application and the Inference Engine.

In order to demonstrate the flexibility and robustness of this novel architecture,
chapters 5 and 6 will apply the pardon architecture to two different tasks, Semantic
Parsing and Word Sense Disambiguation respectively, adapting the formalization to
the concrete task.
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CHAPTER V.

pardon Semantic Role Labeler

“We are all full of weakness and errors; let us mutually pardon each

other our follies it is the first law of nature.”

Voltaire

This chapter presents the application of the general pardon’s architecture de-
tailed in the previous chapter to a particular nlp tasks, Semantic Role Labeling
(srl). We describe how pardon can be applied to srl task and the concrete
knowledge sources used to solve this task.

The aim of this chapter is also to show the development of a robust (able to
work on unrestricted text) and flexible (portable and extensible) approach to srl.
We will do so by means of the application of the pardon’s architecure. That is,
formalizing srl as a Consistent Labeling Problem (clp).

As shown in chapter II, srl consist in the production of a case-role analysis in
which the semantic roles –such as agent or instrument– played by each entity are
identified [Brill and Mooney, 1997]. This task, is crucial in any application which
involves some level of Semantic interpretation or Natural Language Understanding.

srl is a particular interesting task to apply the pardon architecture because
we will need to focus on the interaction between syntax and semantics, as well as
on verbs, as the head sentence components.

Recent works on computational linguistics has attempted to construct represen-
tations which integrate both syntactic and semantic information about a word, e.g.
Head-Driven Phrase Structure Grammars (hpsg), Lexical Functional Grammars
(lfg).

Regarding the interaction of syntax and semantics, a crucial issue is the required
level of syntactic analysis. As shown in chapter II, chunk parsing [Abney, 1991] has
been widely used in several fields (e.g. Information Extraction) as an alternative
to deal with the lack of robustness presented by traditional full parsing approaches.
Chunk parsing softens problems with close world assumption (full coverage grammar
and lexicon), local errors produced by global parsing considerations [Grishman, 1995]
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and the selection of the best full parse tree among a forest of possible candidates.
Given that the verb is the core component of a sentence, there is no doubt

that subcategorization information may not only improve parsing —e.g. taking into
account probabilistic subcategorization on a statistical parser [Carroll et al., 1998]—
but also provide the basic information to assemble those chunks into more complex
structures.

Despite the lack of robustness of full parsing (specially for a free word-order
language like Spanish), it provides useful information for the identification of roles
that a simple chunk analysis is unable to capture [Gildea and Palmer, 2002]. par-

don’s architecture integrates the subcategorization information used by statistical
full parsers with the information used to identify roles, thus, using this knowledge
simultaneously in a collaborative and integrated manner.

V.1 Different Approaches to Semantic Interpretation

Semantic Interpretation and in particular Semantic Role Labeling (srl) have been
an old challenge in nlp. In this section, we will mainly focus on two systems
with integrated architectures: absity and Hunter-Gatherer. Emphasizing their
processes and knowledge integration. We will also present other approaches (Fer-
nando Gomez’s system and the Compansion project) and the recent works from
Machine Learning community on srl.

V.1.1 ABSITY

Back in 1987, Hirst developed absity (A Better Semantic Interpreter Than Yours)
[Hirst, 1987]. Absity was a tandem semantic interpreter which combines differ-
ent kinds of knowledge in a sequential order. absity is based on two components:
Marker Passing and Polaroid Words (pw). Marker Passing is one of the earliest
techniques to find relations between components based on paths on a semantic nets.
Polaroid Words (pw) are fake semantic objects, a-kind-of ambiguous representa-
tion of all the possible semantic objects associated to a word. A Pw like Polaroid
photograph, is a partly developed picture, but viewable and usable in its underspec-
ified/degraded/amalgamated form. As the interpretation takes place pws become
more developed/disambiguated. absity was pioneer in combining several knowl-
edge sources. However, absity applies its different knowledge in a pre-established
order. Alternative knowledge is just taken into account when the previous knowledge
is unable to decide.



V.1 Different Approaches to Semantic Interpretation 87

This could drive absity into an early pruning of the right interpretation. As
Hirst himself pointed on [Hirst, 1987] in the example in figure V.1, where pw choose
the wrong sense for start (Astronomical object). That is because pw disambiguates
star based on the simple relation between astronomer and astronomical object with-
out taken any other consideration (such as selectional preferences for the verb
marry). In Hirst’s words “The error will only be discovered after the sentence is
fully interpreted and the Frail1 attempts to evaluate the erroneous frame statement
that was build”.

The astronomer married the star
Human event Human

Astronomical object

Figure V.1: Example of what PW can not do.

V.1.2 Hunter-Gatherer

On middle 90’, Hunter-Gatherer (HG) [Beale and Nirenburg, 1995; Beale, 1996;
Beale et al., 1996] was developed inside the Mikrokosmos project. Mikrokosmos2 is a
knowledge-based machine translation system. Mikrokosmos semantic representation
is based on Text Meaning Representation (TMR) and its different knowledge sources
are keep independent in different “microtheories”.

Regarding process integration, Hunter-Gatherer is also a tandem3 semantic inter-
preter which combines different knowledge sources inside a Constraint Satisfaction
Problem frame. Thus, the knowledge is not applied on a pre-established order.
In order to avoid the combinatorial explosion of possibles partial interpretations,
Hunter-Gatherer uses the parse tree to divide the problem into a-kind-of pseudo-
independent sub-problems (named circles). Thus, further than efficiency criteria,
the main drawback of HG approach is its reliance on having the correct full parse
tree of the sentence.

V.1.3 Fernando Gomez’s Semantic Parser

More recently Fernando Gomez4 has developed an algorithm for semantic interpre-
tation [Gomez, 2001] based on extending WordNet with predicates [Gomez, 1998].
His work is centred in the determination of the meaning of the verb. WordNet does
no classifies the verbs based on semantic decomposition (see for instance [Zickus,
1994] for a detailed comparison between WordNet senses and Levin Classes for some

1Frail is the absity’s frame language which incorporates first-order predicate calculus
2See http://crl.nmsu.edu/Research/Projects/mikro/index.html
3Even though in HG, parsing is carried out alone before any semantic validation takes place

in a sequential model, it can be considered as a tandem semantic interpreter in the sense that all
the possible parse trees in the resulting forest are checked semantically. Thus, the overall results
obtained should be the same.

4http://www.cs.ucf.edu/~gomez
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verbs). Although, the WordNet troponym relation covers a diverse class of semantic
relations between verbs, including the intention of the agent, the way the action is
carried out, the instrument, etc. Thus, they have taken a top-down approach that
defines generic abstract predicates subsuming semantically and syntactically a large
class of verbs.

The abstract semantic predicates (see figure V.2)5 contain selectional preferen-
ces/restrictions (e.g. substance) and syntactic relations (e.g. obj with a preposition
with) for the semantic roles defined (e.g. theme).

(fill-or-load
(is-a (cause-to-change-of-location))
(wn-map (fill1) (fill2))
(theme

(substance physical-thing)
(obj (prep with))

)
(goal

(instrumentally phisical-thing)
(obj obj-if-with (prep into on onto in))

)
)

Figure V.2: Example of Fernando Gomez’s Semantic Predicates

The set of semantic roles used is not defined independently of the meaning of
the verb. Thus, it differs greatly from Dowty [Dowty, 1991] because it makes no
distinction between adjuncts or thematic roles (e.g. he establishes a distance role
for change-of-location verbs).

These entries in the predicates will be used by the semantic interpreter to at-
tach modifiers and to link syntactic relations to semantic ones. The input of the
semantic interpreter is the result of a parsing process which recognizes clausal, NP
complements and relative clauses, but do not solve structural ambiguity. Then the
algorithm for the semantic interpretation, roughly speaking, looks up the predicates
corresponding to verbs (or nominalizations) in the sentence, establishes the possi-
ble matches for filling the predicates and applies in a fixed order a set of heuristic
rules for disambiguation, PP attachment, detection of clause boundaries [Gomez et
al., 1997], [Gomez, 2001]. Although two corpus of fully tagged sentences of about
1,000 sentences has been released, the whole system and the predicates associated
to WordNet are not yet available.

5I want to thank Fernando Gomez for the example of his system
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V.1.4 Compansion

A different approach to Semantic Interpretation for nlu is the Compansion Project6.
The goal of Compansion is to improve the communication of people with severe dis-
abilities via natural language processing techniques. It expands a compressed (tele-
graphic) sequence of words input by the user into a semantically and syntactically
well-formed utterance. The input is a sequence of roots of the content words of the
desired utterance; thus, many function words including determiners (e.g., the, a)
and prepositions (e.g., of, in) will normally be left out. The system is responsible
for filling in missing words as well as correctly conjugating the verb and forming a
syntactically correct utterance. The system attempts to form an utterance whose
word order most closely reflects the word order given in the original input string.
For example, if the system receives “Apple eat John”, we would like the system to
produce the sentence, “The apple is eaten by John”. Altough with different objec-
tives in mind, the Compansion projects also seeks robusteness for Semantic Parsing,
and can be seen as another approach for the improvement of the Natural Language
Understanding components.

V.1.5 Machine Learning approaches to srl

More recently, the development of resources such as FrameNet, PropBank has lead
some works on the task of automatic labelling of thematic roles, using statistical
and machine learning techniques [Gildea and Jurafsky, 2000], [Gildea and Jurafsky,
2002] and Combinatory Categorial Grammars [Gildea and Hockenmaier, 2003], etc.

The great interest in the community has draw to new tasks in the main eval-
uation competitions on nlp (CoNLL and Senseval). For instance, the Conference
on Computational Natural Language Learning (CoNLL-2004 and CoNLL-2005) in-
cluded semantic role labeling as a shared task. The test data consist of the sections
of the Wall Street Journal part of the Penn Treebank used in past editions of the
CoNLL shared tasks. The role labeling information have been derived from the Penn
TreeBank II project for the syntactic information, and from the PropBank project
for the propositional analysis. Also a new Senseval-III task has been set up about
the Automatic Labeling of Semantic Roles based on a FrameNet approach. This
task consists in, given a sentence, a target word and its frame, identify the frame
elements within that sentence and tag them with the appropriate frame element
name.

Following this brief introduction, sections V.2, V.3 and V.4 explain, respectively,
the basic ideas behind our system, its architecture, as well as the different sources
of knowledge and the way in which they are integrated. Section V.5 describes the
experiments carried out and reports the results obtained. Finally, section V.6 draws
some conclusions and outlines further research lines in the application of the pardon

architecture to Semantic Parsing.

6http://www.asel.udel.edu/nli/nlp/compansion.html
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V.2 Applying the pardon’s approach

Most of the current linguistic theories assume that the syntactic structure of a
sentence depends to a large extent on the lexical properties of the verbs. The
meaning of the verb becomes, then, a central element whose argument structure
determines the overall syntactic shape of the clause.

Our view of semantic parsing is based on compositional semantics and lexicalized
models (i.e. the meaning of a sentence is the result of combining the meaning of its
words and the possible combinations are determined by models associated to these
words).

Bearing that in mind, using pardon architecture, the semantic objects associ-
ated to syntactic chunks that appear in a sentence are combined in order to build
a case-role representation of the whole sentence. This combination is carried out
using syntactic and semantic knowledge obtained from a linguistic approach (sub-
categorization frames). In order not only to complement the modelization of the
task but also to show the flexibility of the architecture, we enriched the system with
a statistical model of lexical attraction.

For instance, starting with the chunks in the sentence “Este año en el congreso
del partido se habló de las pensiones”7 shown in Figure V.3, we will obtain the
case-role representation shown in Figure V.4 by combining:

• The initial semantic objects associated to those chunks.

• The impersonal model of the verb “hablar” (to talk) shown in Table V.2.

• The noun modifier model shown in Table V.3.

Este año en el congreso del partido se habló de las pensiones
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Figure V.3: Chunks for “Este año en el congreso del partido se habló de las pen-
siones”

Applying the pardon’s architecture, decisions related to high level syntax and
semantics will be fully integrated. Moreover, we will be able to easily integrate two
completely different kinds of knowledge, the subcategorization model from Lexpir

(manually developed) and a lexical attraction model (statistical).
As the input of the pardon Semantic Parser are chunks, the first step is to

preprocess the sentences, performing PoS-tagging, chunking and semantic annota-
tion. Then, the Lexpir model and lexical attraction model for the elements in
the sentence will be retrieved and formalized as a Consistent Labeling Problem in

7Literal Translation: This year in the meeting of the political party [someone] talked about the
pensions
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head hablar

hdle hablar

catg VP

num sg

per 3

sem Commun.

3

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

c8

model Nde

head

2

6

6

6

6

6

6

6

6

6

6

6

4

c2

words en el congreso

head congreso

hdle en

catg PP

num sg

gen m

sem Top

3

7

7

7

7

7

7

7

7

7

7

7

5

modif

2

6

6

6

6

6

6

6

6

6

6

6

4

c3

words del partido

head partido

hdle de

catg PP

num sg

gen m

sem Group

3

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure V.4: Case-role structures obtained for the sentence in Figure V.3

the framework of pardon. Finally, applying the relaxation labeling algorithm the
system selects the most appropriate verbal model for the sentence and role filling
for each chunk.

Before describing the formalization of the Semantic Role Labeling inside par-

don, the next section introduces the lexical model needed to identify the thematic
roles.

V.3 Lexical Models for Semantic Role Labeling

There has been a number of initiatives to build real-world lexicons for semantic
processing, most of them somehow related to Levin’s Verb Classes [Levin, 1993] and
WordNet [Miller et al., 1998].

Section II.4 has presented most of these resources (FrameNet, PropBank, Verb-
Net, the univ. Maryland’s Lexical Conceptual Structures or the work of Fernando
Gomez).

All these resources differ in their semantic representations (Lexical Conceptual
Structures vs. Semantic Frames, arguments vs. thematic roles) or semantic de-
composition principles. However, some of these resources (e.g. VerbNet, Framenet,
ProBank and WordNet) can be related through the Unified index8. However, most
of these resources are only available for English.

8See the Verb Frame Search Tool at http://www.cis.upenn.edu/~dgildea/Verbs/
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One of our main goals in this chapter are to explore and exploit the relations
between syntax and semantics. Therefore, we need a model that makes this mapping
explicit because we focus on free-word order languages, such as Spanish or Catalan,
which are our big challenge. However, at present, the availability of this type of
resources for languages other than English is poor. Dorr’s LCS has just become
recently available for Spanish and Chinese. Also, a Spanish version of FrameNet is
currently under early development, although, FrameNet is not directly suitable for
our purposes because there is no explicit modelling of the syntactic realization of
the frame elements. This relation is being made explicit in the annotation of the
FrameNet corpus to allow the automatic learning of these mapping/models by the
application of Machine Learning/Statistical techniques (See [Gildea and Jurafsky,
2000; Gildea and Jurafsky, 2002]).

We chose Lexpir ([Fernández and Mart́ı, 1996], [Fernández et al., 1999] and
[Morante et al., 1998]) for our experiments, because it provides an explicit mapping
between syntax and semantics and it focuses on a free-word order language (Span-
ish). But our approximation to semantic parsing could be applied to other lexicons
by modelling appropriately the constraints associated with their models.

Next subsection gives a detailed description of the Lexpir lexicon and its com-
ponents. This description is needed in order to better understand the way we have
addapted the pardon architecture to Semantic Parsing.

V.3.1 LEXPIR

Pirapides [Vázquez et al., 2000] is a project centred on the study of the English,
Spanish and Catalan verbal predicates. Pirapides has several goals: On the one
hand, from a theoretical point of view, a deep study is being carried out on the
units that the model of a verbal entry has produced. This syntactic component
focuses on the representation of the interaction between the syntactic and semantic
components. On the other hand, from an application-oriented point of view, a
lexicon (Lexpir) based on this theoretical model is being developed, in order to
perform corpus analysis.

Capturing the argumental structure or even the syntactic functions of a Spanish
sentence may be a hard task, given the optionality of some constituents (such as the
subject) and the free–order syntax structure of Spanish.

The classification is based on verb meaning components as well as their diathetic
alternations [Vázquez et al., 2000; Fernández et al., 1999; Morante et al., 1998].
The diathetic information allows to infer the number of semantic components which
can be explicitly realized or implicitly understood. For the work presented here,
information about the prepositional value of arguments is also included9.

Verb classes are organized in a hierarchy which enables the use of default mono-
tonic inheritance to describe verb properties. That is, each verb inherits the elements
from its group and each group from its class. However, the inherited information
can be overwritten by the information already associated to the specific verb entry.

9The information of Lexpir has been augmented with prepositions for 61 trajectory verbs.
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basic model for Trajectory verbs
Catg. Handle Comp. Sem. Agree. Opt.
NP p inic starter Human yes yes
x x entity Top no yes
PP p ruta route Top no yes
PP p orig source Top no yes
PP x destination Top no yes

Table V.1: Basic Model for trajectory verbs

Table V.1 presents the different elements that appear on the basic model for any
Trajectory class verb:

• Catg : Syntactic realization of the semantic component. For the second com-
ponent this information is unspecified (x) as the syntactic realization depends
on the subclass. Moreover, this element, which is usually the Direct Object,
has other restrictions: if its semantics indicates that it is [+human/animate]
it should be a PP, while if it is [-human/animate] it has to be realized as an
NP.

• Handle: List of prepositions that may introduce the component according to
their meanings and occurrences.

• Component : Describes the meaning component, determined by the class.

• Semantics: Describes the semantics of the component. This is an argument–
specific feature.

• Agreement : States whether person and number agreement with the verb is
required.

• Optionality : States whether the component is optional.

Dealing with the optionality of the meaning components within the model itself
allows us to reduce the number of possible alternations which have been established
at a theoretical level (Pirapides takes the underspecification of a component as an
alternation). Only information which is different to the one associated to the class
is actually marked. For instance, in the periphrastic passive model associated to
the communication class, the entity element (defined as {NP;entity;x;Top:yes;no}),
has to be realized as an NP and also has to agree with the verb.



94 pardon Semantic Role Labeler

Table V.2 shows the resulting expansion of the basic and impersonal models for
a concrete verb: “hablar” (to talk) which is an instance of the Trajectory class.
Unspecified entries are inherited from the class model definition. The upper part of
the table presents the basic model inherited from the Trajectory class in Table V.1
but using the specific preposition of the verb “hablar”. The lower part shows an
alternative model for impersonal uses (i.e. ’se habla’ – people talk –) which is not
present either in the general class.

basic model for “hablar”
Catg. Handle Comp. Sem. Agree. Opt.
NP x starter Human yes yes
PP de, sobre entity Top no yes
PP con destination Top no yes

impersonal model for “hablar”
Catg. Handle Comp. Sem. Agree. Opt.
SE x se Top no no
PP de, sobre entity Top no yes
PP con destination Top no yes

Table V.2: Models for the verb “hablar”

V.4 pardon’s Formalization for Semantic Role Labeling

This section formalizes the pardon approach to Semantic Role Labeling by setting
up the case-role interpretation problem as a Consistent Labeling Problem (clp),
where the different kinds of knowledge are applied as weighted constraints.

A clp basically consists in finding the most consistent label assignment for a
set of variables, given a set of constraints. Once the sentence and its knowledge is
represented in terms of a clp, a relaxation labeling algorithm is used to obtain the
most consistent interpretation10.

As we shown previously, this formulation allows us to naturally integrate different
kinds of knowledge coming from different sources (linguistic and statistical), which
may be partial, partially incorrect or even inconsistent.

10See chapter I and appendix A for a detailed description of clp and the relaxation labeling
algorithm.
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V.4.1 Knowledge Representation

Variable Name Values
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(entity, impersonal, c5)
(modif, Nde, c1)
(modif, Nde, c2)
(modif, Nde, c3)
TOP

Figure V.5: clp associated to the objects in Figure V.3

As described in chapter IV, pardon represents the meaning of a sentence in
terms of relationships between semantic objects, using two variables for each seman-
tic object: the model (object.model) and role (object.role) variables. For instance,
the semantic object associated to a chunk headed by “hablar” (to talk) can use a
basic model (someone talks about something with someone: [c5.model = basic]) or
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an impersonal model (one talks about something [c5.model = impersonal ]).
The role variable represents the role that a semantic object plays inside the

model of another semantic object. For instance, the semantic object “pensiones”
(the pensions) can play the role entity for both models of “hablar” (to talk) (e.g.
[c6.role = (entity, basic, c5)]).

In order to identify a role from a model label we need a triplet (role, model,
semantic object). For instance, the role starter of the basic model for “hablar” is
represented as (starter, basic, c5).

In our current model, the features of the initial Semantic Objects associated to
the chunks do not change11. Thus, only the role and model variables are needed
in the clp. Figure V.5 shows the variables and labels associated to the semantic
objects in Figure V.3. As described in chapter IV, there are two null labels: none

and top.
On one hand, the label none is associated to the model variables represent-

ing semantic objects that do not have/use a model (usually the semantic objects
with no sub-constituents), for instance most of the semantic objects associated to
Prepositional Phrases.

On the other hand, the label top is associated to the role variables to represent
semantic objects not playing a role in the model of a higher constituent. In this
application of pardon to srl, it usually represents the sentence head, which will
probably be the main verb of the sentence.

The next step in the formalization of the srl following pardon’s architecture
is to establish the possible assignments. That is, to determine which the possible
models are and which roles of these models can be played by the Semantic Objects
associated to the initial chunks.

Thus, we have to determine which restrictions expressed by the lexicalized model
must hold (Hard Constraints) and which constraints can be softened in order to find
a solution (Soft Constraints), (e.g. selectional Preferences, heuristics or knowledge
that we know could be inconsistent or incomplete).

When formalizing the problem, the models that can not fill any of their compul-
sory roles should not be taken into account and neither should all their associated
roles (and their possible assignments). The function match(Object,Role) we would
determine whether a Semantic Object could play a role (represented as a possible
assignment) or not.

11Except role and model
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Algorithm 3 describes in pseudo-code the procedure for building the clp:

Algorithm 3 Pseudo code of the algorithm for building the clp

for each chunk C in the sentence do
create the Semantic Object A for the chunk C
for each model M associated to the head of chunk C do

add <M,A> to the activeModels list
end for

end for
for <M,A> in the activeModels do

if all the compulsory roles of M have at least one match then
for each role R of model M do

for each Semantic Object SO do
if match Role SO then add SO as possible player of role R
end if

end for
end for

end if
end for

V.4.1.1 Attribute Representation

The constraints that establish how likely it is that a Semantic Object plays a role
can be calculated only once, at the beginning of the process. This is possible because
in our current model, the features of the initial Semantic Object associated to the
chunks do not change12.

V.4.2 Role and Model Application

In order to apply the sim(Object, Role) measure, we established a particular simila-
rity measure for each feature. The value returned is normalized into [−1, 1]. For the
compulsory attributes we use the strict equality while for the optional attributes,
this measure is inversely proportional to the number of relabeling operations needed
to transform one feature structure into the other. Currently, only person, number
semantics are considered.

As seen in the general description of pardon’s architecture, regarding the match-
ing between an object and a role, there are three different types of attributes, com-
pulsory, optional and those attributes to be ignored. In this particular formal-
ization, we will consider compulsory catg and handle attributes while we will
consider optional the Sem attribute.

As catg, handle, person and number are static, the hard constraints
associated to these attributes in the match(Object, Role) can be calculated outside
the clp. In a similar way the agreement constraint (agreement between the verb

12Except role and model
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and one of more roles) can be also calculated as the verb of the model is known and
thus it can be calculated in the static function simstatic. Thus, in this formalization
we will not add any constraint for attribute propagation/percolation.

After formalizing Semantic Parsing as a Consistent Labeling Problem, a set of
constraints stating valid/invalid assignments is required to find a possible solution.
pardon uses three kinds of constraints: The first group contains the constraints
that encode the linguistic information obtained from verb subcategorization models.
The second group are additional constraints added to force a tree-like structure for
the solution. Finally, a third set of constraints encoding statistical information
about word co-occurrences was added in order to complement the subcategorization
information available.

Following the pardon’s framework, next sections will describe how the general
modelization is adapted to the specific models from Lexpir, that is the specific
formulation of the model application constrains, model combination constraints and
structural constraints. Structural constraints do not change but are included to show
a more complete view of the formalization.

Moreover, extra specific constraints modelizing PP-attachment and Lexical At-
traction are added to help the models application and to show the flexibility of the
architecture (PP-attachment and Lexical Attraction).

V.4.3 Model Application Constraints

Two different kinds of subcategorization models have been used: one about verbal
subcategorization and another one about noun modifiers.

For each chunk labelled as verb phrase (VP), all possible subcategorization mo-
dels for the verb heading the chunk are retrieved from Lexpir. For prepositional
phrases (PP) and noun phrases (NP) we use the simple nominal modifier model Nde

presented in table V.3.

Nde model for nouns
Catg. Handle Comp. Sem. Agree. Opt.
PP de modifier Top no no

Table V.3: Model for noun modifiers

Due to the richness and complexity of natural language, the prototypical subcat-
egorization patterns defined in Lexpir do not reflect exactly the complex patterns
to be found in real data. Thus, a measure of the “goodness” of the possible model
instantiation is defined in a similar way to the tree-edit based pattern matching used
in [Atserias et al., 1999; Atserias et al., 2000].

In order to ensure the global applicability (minimal disorder, agreement, maxi-
mum similarity between the role and semantic object and maximal number of roles)
and the consistence of the model (a unique instantiation per role and the instanti-
ation of compulsory roles) the following constraints are automatically instantiated
from the models:
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• Model Support: A model assignment is compatible with its optional roles,
e.g.: [hablar.model = basic] ∼ [c6.role = (entity, basic, c5)]

• Model Inconsistence: A model assignment is incompatible with the inexis-
tence of any of its compulsory roles, e.g.:

[c5.model = impersonal] � ¬ [c4.role = (se, impersonal, c5)]

• Role Support: A role assignment is compatible with the assignment of its
model, e.g.:

[pension.role = (entity, basic, c5)] ∼+sim(...) [c5.model = basic]

The weight for this constraint is the similarity between the feature structures
of both the Semantic Object and the Role (e.g in the constraint example, the
similarity between the Semantic Object associated to “pension” and the Role
entity of the basic model of the verb “hablar”).

V.4.4 Model Combination constraints

On clp the different assignments of a variable are incompatible. Thus, using the
formalization proposed in this chapter the Object Instantiation Uniqueness and Mo-
del Uniqueness constraints are ensured by the algorithm itself (as the labels of a
variable are incompatible among them). Thus, only Role Uniqueness and Role
Inconsistence are modeled as clp constraints.

• Role Uniqueness: The same role cannot be assigned to different chunks,
e.g.:

[c6.role = (entity, basic, c5)] � [c3.role = (entity, basic, c5)]

This constraint penalizes the current weight of the assignment of the role
entity of the verb hablar (c5) to the pensión (c6) [c6.role = (entity, basic, c5)]
according to the current weight of the assignment of the same role to partido
(c3) ([c3.role = (entity, basic, c5)]). Thus, the higher the weight for the latter
assignment is, the faster the weight of the former will decrease.

• Role Inconsistence: A role assignment is incompatible with the non exis-
tence of the assignment of its own model, e.g.:

[c6.role = (entity, basic, c5)] � ¬ [c5.model = basic]
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V.4.5 PP-attachment constraints

Additionally, a special set of constraints has been introduced to deal with PP-
attachment:

• Local PP attachment: A prepositional phrase tends to be attached to its
nearest head. The weight assigned to each constraint will decrease along with
the distance (in words) between the semantic objects involved, e.g.:

[pension.role = (entity, impersonal, c5)] ∼−distance(c6,c5) [ ].

Note that there is no right-hand side on the constraint as it is valid for any
context

V.4.6 Structural Constraints

As described in section IV.7.2.1, some further constraints must be included to force
the solution to have a tree-like structure. These constraints are not derived from
the subcategorization models:

• TOP Uniqueness: Different assignments of the label TOP are incompatible,
e.g.: [c3.role = TOP] � [c5.role = TOP]

• TOP Existence:

There is at least one TOP. We will give support to all TOPs

e.g.:[hablar.role = TOP] ∼ [ ]

an alternative will be to give support to a TOP existance according to the
other TOP assignment

e.g.: [c5.role = TOP] � [c1.role = TOP] ∨ [c2.role = TOP] ∨
[c3.role = TOP] ∨ [c4.role = TOP] ∨ [c6.role = TOP]

• No Cycles: Two assignments forming a direct cycle are incompatible13, e.g.:

[c6.role = (modif, Nde, c3)] � [c3.role = (modif, Nde, c6)]

• NONE Support: The NONE model is compatible with the inexistence of
any role assignment of the semantic object models, e.g.:

[congreso.model = NONE] ∼ ¬ [c6.role = (modif, Nde, c2)] ∧
¬ [c3.role = (modif, Nde, c2)]

If these constraints were not included, the NONE model would never be se-
lected, since there would always be some other model with a very small non-
zero support.

13In this first prototype of pardon indirect cycles are not taken into account.
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V.4.7 Modeling Lexical Attraction

In a similar way to [Yuret, 1998] we also define a language model based on lexical
attraction. In our case, we estimate the likelihood of a syntactic relation not between
two words but between two semantic objects.

Our hypothesis is that the relations between two semantic objects can be de-
termined taking into account two special elements of their associated chunks, the
handle and the head. The handle of a chunk is usually the preposition that specifies
the type of relation that chunk has with another chunk, while the head of a chunk
is supposed to capture the meaning of the chunk [Basili et al., 1998]. For instance,
the chunk “de las pensiones” (about the pensions) has handle “de” (about) and head
“pensión” (pension).

Since related words are expected to occur together more likely than unrelated
words, the lexical attraction (the likelihood of a syntactic relation) between two
words can be estimated/modelled through co-occurrence. Co-occurrence data can
also indicate negative relatedness, when the probability of co-occurrence is lower
than by chance. Thus, we will measure the lexical attraction between two semantic
objects as the co-occurrence of both heads and the co-occurrence of the head and
the handle (which gives an implicit direction of the dependence).

Since the co-occurrences were taken from the definitions of a Spanish dictionary,
lemma co-occurrences were used instead of word co-occurrences in order to minimize
the problems caused by unseen words [Dagan et al., 1999]. 175,333 head-handle
co-occurrences and 961,470 head-head co-occurrences were obtained out of 40,591
different head-lemmas and 160 different handle-prepositions. The co-occurrences
were used to compute Mutual Information for each lemma–preposition pair.

MI(headi, handlej) = log
P (headi ∩ handlej)

P (headi)× P (handlej)

In the case of lemma-lemma pairs, sparseness is much higher. Thus, an indirect mea-
sure was applied, namely context vector cosine (also used in IR and WSD [Schütze,
1992]) in order to calculate the lexical attraction between heads:

cos(headi, headj) =

∑

k akiakj
√

∑

k a2
ki

∑

k a2
kj

where apq is the co-occurrence frequency of lemma p and lemma q, and k ranges
over all the lemmas co-occurring with any of both heads.

Thus, for any two semantic objects the following constraints are added:

• Ai-Hj constraint, which supports any assignment of a role from objectj to
objecti, e.g.:

[c3.role = (modif, Nde, c2)] ∼MI(congreso,de) [ ]

• Hi-Hj constraint, which supports any assignment of a role from objecti to
objectj, or viceversa, e.g.:

[c6.role = (entity, impersonal, c5)] ∼cos(hablar,pension) [ ]
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Hi-Hj and Ai-Hj constraints can be used to identify adjuncts or relations for which
we have no models. For instance, in the result obtained for the sentence shown in
Figure V.3, the semantic object “en el congreso” (in the congress) will be identified
as depending on the verb “hablar”, even when its role can not be determined.

V.4.8 Initial State

In order to establish the initial weight for each type of variable we choose the fol-
lowing heuristics:

• Roles are initialized according to the static similarity function.

• Models are initialized according to the result of the static evaluation of the
similarity function of their roles assignments.

V.5 Experiments

170 real sentences were taken from a Spanish newspaper and were labelled by hand
with their verbal models and meaning components. The sentence average length is
8.1 words, ranging from 3 to 23. Our approach to semantic parsing has been designed
to manage multiple models simultaneously competing for their arguments. However,
since our knowledge base does not include models needed for complex sentences, such
as models for subordination or coordination, only one-verb sentences were selected.

Each sentence in the corpus was tagged and parsed with a wide-coverage gram-
mar of Spanish [Castellón et al., 1998] to obtain a chunk parse tree. Spanish Wordnet
[Atserias et al., 1997] was used to semantically annotate the corpus with the 79 se-
mantic labels defined in the preliminary version of the EuroWordNet Top Concept
Ontology [Vossen, 1998].

As mentioned in section V.4, in order to reduce the complexity of the relaxation
process, the possible role labels (which indicate the roles an object can play in any
of the models retrieved) are filtered considering the unary constraints about POS
and prepositions, while constraints about semantics and agreement are taken as a
measure of how similar (sim) the semantic object and the role are. Models which
can not match compulsory roles are not considered.

For instance, the semantic object año (year) in the example sentence will be
allowed to match the role starter of the impersonal model of the verb hablar even
though its semantics is not Human, but the semantic object congreso will not be
considered as a candidate to fill the entity role of hablar, since the preposition en in
the semantic object does not match the model requirements for that role (preposition
de, sobre). All these filters produce the candidate labels shown in Figure V.5, which
are the input to pardon Selection step.
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V.5.1 Results

The results reported have been calculated using evaluation metrics from Message
Understanding Conferences [MUC, 1995] applied to our particular case of verbal
model identification and case-role filling.

Model identification metrics evaluate how well our system identifies the right
model for a semantic object. Our corpus has 2.7 models per verbal semantic object
as average ambiguity.

Since it is assumed that there is only one right model per chunk in each sentence,
the answer can only be correct (COR) or incorrect (INC), thus, the used metrics
are precision and recall. Table V.4 shows the results obtained in the verbal model
identification task: 95% precision and 91% recall.

COR INC PRE REC

155 8 95% 91%

Table V.4: Verbal Model identification results

Case-role filling consists in assigning each semantic object to the right role in the
models for other semantic objects. In this case, the casuistry is more complex, since
in addition to the correct/incorrect distinctions, other cases must be considered,
such as the roles that are (correctly/incorrectly) left unassigned (because they were
optional, or because there was no semantic object that fitted them, etc.). The MUC
evaluation metrics establish the following cases:

• Correct (COR): Roles correctly assigned by the system.

• Incorrect (INC): Roles incorrectly assigned by the system.

• Missing (MIS): Roles unassigned by the system when they should have been
assigned.

• Spurious (SPU): Roles assigned by the system when they should have been
unassigned.

These cases lead to the definition of the following measures, where Possible (pos)
are the roles that should be assigned (cor+inc+mis) and Actual (act) are the
roles actually assigned by the system under evaluation (cor+inc+spu):

• Undergeneration UND = 100× MIS
POS

• Overgeneration OV R = 100× SPU
ACT

• Substitution SUB = 100× INC
COR+INC

• Error ERR = 100× INC+SPU+MIS
COR+INC+SPU+MIS

• Precision PRE = 100× COR
ACT

• Recall REC = 100× COR
POS

In addition, precision and recall may be combined in different F-measures (P&R,
2P&R and P&2R). Table V.5 shows the results in the case-role filling for verbal
arguments.
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COR INC MIS SPU POS ACT

203 27 60 51 290 281

UND OV R SUB ERR PRE REC

20% 18% 12% 40% 72% 70%
P&R 2P&R P&2R
71% 70% 72%

Table V.5: Verbal case-role filling results

To our knowledge there is neither a similar general approach nor case-role filling
experiments to which our results can be compared. In any case, our preliminary
results (72% PRE - 70% REC) are very encouraging.

It is also remarkable that our system produces low values for UND, OV R and
SUB measures, pointing that it properly uses the different kinds of knowledge, and
that it does not take uninformed or gratuitous decisions.

Errors in the preprocessing steps caused most of the mis-identified models (table
V.4, INC). The missing and spurious roles (table V.5, MIS and SPU) were due
either to the lack of semantic information or to the lack of a verbal model for
adjuncts, which caused mis-identification of adjuncts as arguments, as in “(Juan)
(esqúıa) (este fin) (de año)”14, where the chunk “este fin de año’’ (on New Year’s
Eve) is wrongly identified to fill the route role even though its semantics is Time.
This is due to the lack of a selectional preference that forces the route to be a Place,
and to the lack of a model that identifies the chunk as time adjunct.

V.6 Discussion

This chapter has described a new approach to Semantic Role Labeling for non
domain-specific texts based on the Interactive Model. The robustness and flexibility
of pardon are achieved combining a chunk parsing approach with the framing of the
semantic parsing problem in a clp. The flexibility of our approach enables the in-
tegration of different types of knowledge (linguistically motivated subcategorization
models plus statistical information obtained from corpora).

Currently, pardon obtains a 95% precision on model identification and 72%
precision on role filling. Although the experiments have been carried out on a
limited corpus and lexicon, they have proved the feasibility of the method.

Further work should include a more realistic evaluation of the system, using a
larger corpus with sentences having multiple verbs (maybe using the models and
corpus related to other lexical resources available for English such as FrameNet or
PropBank). In this case, verbal models would compete for their arguments in a
sentence.

We also plan to include more statistical knowledge (measures/language models)
and to extend the coverage and expressiveness of the subcategorization models. Ex-

14John is going skying on New Year’s Eve.
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ploiting the integration of other semantic resources related to Wordnet (e.g the Mul-
tilingual Central Repository [Atserias et al., 2004f], developed inside the Meaning

Project15 [Rigau et al., 2002] which contains selectional preferences automatically
acquired from corpus). Furthermore, the output of the current system could also be
used as feedback to improve the existing verbal models.

The problem of the recognition and classification of Named Entities (such as
proper nouns denoting people and companies, amounts of money, dates, etc.) should
be addressed, studying how to extend the current lexical attraction model to cover
Named Entities. Named Entities do not appear in the training data of the lexi-
cal attraction model but are quite frequent in our test corpus. Thus, the set of
constraints generated using this model tends to support assignments which do not
involve Named Entities.

Finally, the exploration of linguistic and statistical models for the identifica-
tion/distinction of verbal adjuncts should also be investigated, since it seems to be
one of the main causes of verbal argument mis-identification.

15http://www.lsi.upc.es/~nlp/meaning/meaning.html
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CHAPTER VI.

A pardon prototype for Word Sense

Disambiguation

“When I use a word”, Humpty Dumpty said in rather a scornful tone,

“it means what I choose it to mean–neither more nor less.”

“The question is,” said Alice, “whether you can make words mean different things.”

“The question is,” said Humpty Dumpty, “which is to be master–that’s all.”

Lewis Carroll “Alice in Wonderland”

The main goals of the set of experiments presented in this chapter are, first, to
prove the capability of pardon to combine different sources of information to bet-
ter solve a particular task (knowledge integration) and secondly, to demostrate that
combining syntax and semantics, even with noisy and poor coverage models, par-

don is able to obtain interesting results on Word Sense Disambiguation (hereafter
wsd).

VI.1 Different Approaches to wsd

wsd can be defined as the process of deciding the meaning of a word in its context.
The possible senses for a word are previously defined in a sense repository (that
is, a dictionary or lexical resource). WordNet [Fellbaum, 1998], a lexical taxonomy
built at Princeton University, has become the de facto standard sense repository in
Natural Language Processing for English. Although WordNet was not designed to
serve as a lexical resource, its public availability and reasonable comprehensiveness
have been dominant factors in its selection as the lexical resource of choice.

Word sense disambiguation is an important objective in the language engineering
community. The first attempts to perform a kind of wsd, were embedded modules
in sentence interpretation systems. Since then wsd has been evolving rapidly and
the nlp community has developed multiple approaches and systems for wsd, but it
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still remain an open problem, not only about how to solved but also on the exactly
definition of the wsd problem itself. [Stevenson, 1999] differentiates different levels
of wsd based on the information used: knowledge based (e.g. based on dictionary
definitions), corpus based (e.g. supervised or unsupervised machine learning tech-
niques) and hybrid approaches (combining in some way the two previous categories).

A promising current line of research on wsd uses semantically annotated corpora
to train Machine Learning (ML) algorithms to decide which word sense to choose in
which contexts. Five of the most frequently used ML methods are: Naive Bayes, Ex-
ample based, Support Vector Machines, Decision Lists and Vector Models [Màrquez
et al., 2006].

Supervised wsd systems are data hungry, they suffer from the “knowledge ac-
quisition bottleneck”. These approaches are named “supervised” because they learn
from previously sense annotated data and therefore they require a large amount
of human intervention to annotate the training data. Although ML classifiers are
undeniably effective, they will not be feasible until obtaining reliable unsupervised
training data.

Thus, some recent work is focusing on reducing the knowledge acquisition cost
and the need for supervision in corpus-based methods for wsd. [Leacock et al., 1998;
Mihalcea and Moldovan, 1999; Agirre and Martinez, 2000; Martinez, 2004; Cuadros
et al., 2006] automatically generate arbitrarily large corpora for unsupervised wsd

training, using the knowledge contained in WordNet to formulate search engine
queries over large text collections or the Web.

As different systems and approaches emerged, there was a need to compare fairly
these systems. A really difficult task if they use different sense repositories or test
corpus. The initiative for the Evaluation of Systems for the Semantic Analysis of
Text (Senseval) framework was designed to address this problem [Kilgarriff, 1998].
Senseval1 is devoted to the evaluation of Word Sense Disambiguation Systems.
Its mission is to organise and run evaluations and related activities to test the
strengths and weaknesses of wsd systems in different tasks. From Senseval-II to
Senseval-III there was not a significant improvement in performance for English.
The best systems are still about 65-70%. In fact, it seems that new approaches to
wsd are needed.

This chapter wants to explore two approaches: on the one hand whether the
integration of knowledge already available (knowledge integration) could improve
wsd. On the other hand whether the integration of wsd with other nlu process
(process integration) could also improve the overall figures on this task.

Using the pardon’s architecture, we would formulate the Word Sense Disam-
biguation problem in a similar way than the Semantic Role Labeling in chapter V.
Each word sense would have associated a set of models with syntactic and semantic
information and our task will be to establish which of these models is more similar
to the input sentence. Thus, the syntactic-semantic model selected will establish
the correct word sense, not only for the syntactic head but also, if possible, for the
rest of the roles. Thus, the word is assigned the sense of the most similar example

1http://www.senseval.org
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already seen, as in example-based learning: Lexas [Ng and Lee, 1996], Timble

[Hoste et al., 2001], Gambl [Decadt et al., 2004].
During the pre-processing phase the input sentence containing the word to dis-

ambiguate will be syntactically parsed and the syntactic dependencies between their
elements obtained. Then, each word and its grammar dependencies is transformed
into a feature structure. The resulting ordered sequence of feature structures will
be used by the pardon-wsd system.

The following sections, explains our approach to wsd and how we have adapted
the pardon’s architecture for wsd.

VI.2 Applying the pardon approach

Despite the fact that wsd and srl are strongly correlated, traditionally, most of the
systems treat both separately. Paradoxically, wsd can improve srl, as the different
senses of a word could present different syntactic structures (specially verbs) and
the other way round, srl can help wsd (e.g. selectional preferences could determine
the right sense of the verb and its objects [Carroll and McCarthy, 2000]). Moreover,
there are few examples of a real use of syntactic information for wsd, [Lin, 1997],
[Mihalcea and Faruque, 2003]. Most wsd system rely on low level attributes (e.g.
local features and bag of words) ignoring syntax or using syntax in a shallow manner.

In chapter V, srl was carried out by means of finding the model/s which are
the most similar to the input sentence. Following this approach and connecting our
models to WordNet, at the same time that we identify the most similar model, the
correct sense of the word will be also selected. In that way, we formalize a framework
where srl and wsd are performed simultaneously.

VI.2.1 pardon’s input

During the first pre-processing step, the input sentence containing the word to dis-
ambiguate is syntactically parsed using Rasp [Carroll et al., 1998], obtaining the
syntactic dependencies between the words in the sentence. Figure VI.1 shows the
dependency analysis obtained for the sentence “The cat eats fish”.

detmod ncsubj dobj







c1

head the

pos AT













c2

head cat

pos NN1













c3

head eat

pos VVZ













c4

head fish

pos NN2







Figure VI.1: Dependencies for “The cat eats fish”
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Then, each word is tagged with all its possible senses in WordNet. We use an
specific tool for lemmatizing and recognizing multi–word expressions (MWEs) ac-
cording to WordNet [Arranz et al., 2005] instead of the lemmatization/tokenization
provided by Rasp. Lemmatizing and recognizing MWEs is not only relevant to wsd

(as they tend to be less ambiguous) but also to PoS tagging and parsing as many of
them have an idiosyncratic syntactic structure.

Once all possible senses in WordNet are added for each word, the input is also
enriched with all the information associated to each sense using the Multilingual Cen-
tral Repository (mcr)[Atserias et al., 2004f], that is: the expanded EuroWordNet’s
Top Concept Ontology [Atserias et al., 2004a], Suggested Upper Merged Ontology
(sumo) [Niles and Pease, 2001] and MultiWordNet Domains [Magnini and Cavaglia,
2000].

The resulting information (syntactic dependencies and semantic information)
for each word is converted to a feature structure. Figure VI.2 shows the feature
structure obtained for fish, which contains the information related to its two senses:
the food sense (fish#n#1) and the animal sense (fish#n#2). Henceforth, we will
use the term object to refer to those feature structures.
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Figure VI.2: Object Fish enriched with mcr information

VI.2.2 Lexicalized Models for srl and wsd

The pardon approach to wsd relies on the existence of lexicalized models associated
to a word which determines how this word can be combined with other words. We
will also refer to this word as the head of the model and the rest of components of
the models as roles.

In order to integrate srl and wsd following the pardon approach we need to
relate these lexicalized models to WordNet. That is, having explicit information of
the WordNet senses not only for the head of the model but also for the semantic
preferences of the roles. Moreover, once we have build models with WordNet sense
information, we can enrich those models using all the information stored into the
mcr (see chapter III).
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model basic for “hablar” (to talk)
Synt. Prep. Rol Semantics Agree. Optional.
NP x starter Human yes yes
PP de, sobre entity Top no yes
PP con destination Top no yes

Table VI.1: Example of LEXPIR Syntactic-Semantic model for srl

Apart from being related to WordNet, the models used in this chapter for the
formalization of pardon as a wsd system will be similar to those used in the
previous chapter for Semantic Role Labeling, (as the one in table VI.1), but using
syntactic grammatical dependencies instead of syntactic label of chunks.

Figure VI.3: Model Matching

Figure VI.3 shows the application of an adaptation of the model seen in table VI.1
(converting the chunk information into dependencies) to a simple Spanish sentence
(literally, the president talked about foreign policy). The models whose head is hablar
are ‘anchored’ on the word habló (to talk) which is graphically represented by a blue
thick arrow. Two of the three roles of the models can be instantiated by words in the
real sentence (blue dotted arrows). That is, the word presidente (president) could be
the Starter while the word politica (literally politics) could be the Entity. Notice
that since we are now relaying on dependencies not chunks or parsed trees, to retrieve
the ‘whole’ role (blue dotted circles) we need to follow the dependency relations, that
is ‘El presidente’ (the president) for the Starter and ‘poĺıtica exterior’ (foreign
affairs/policy) for the Entity.

In order to disambiguate all the content words in the sentence, we will need
to use all the models for the content words of that sentence. However, having to
disambiguate only one word (that is, the target word) in the sentence (i.e. lexical
sample task), arises a new issue in pardon’s modelization: We need to determine
which are the words whose models should be considered in order to disambiguate
the target word.
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Her remorse was shallow and brief. Although she was kind and
playful to her children, she was dreadful to her war-damaged
husband; she openly brought her lover into their home. As
presented by Mr. Chabrol, and <head>played</head>

with thin-lipped intensity by Isabelle Huppert, Marie-Louise
(called Marie La tour in the film) was not a nice person.

Figure VI.4: play.131 example of the Senseval-II English lexical sample

For instance, figure VI.4 shows a test sentence (play.131) of the Senseval-II

English Lexical Sample. The word to be disambiguated (target word) appears en-
closed inside the tag head (in this example, the verb to play). The models that can
take part directly or indirectly in the disambiguation of the target word depend
greatly in the dependency analysis obtained for the sentence, shown in figure VI.5.

Figure VI.5: Dependency Analysis

First, in order to disambiguate the target word, we should consider the models
associated to the target word itself (that is the models for all the senses of the verb
play). The application of those models will also relay indirectly in the disambigua-
tion of the nodes that directly depend on the word to play (the grey area). That
is, the words: presented, intensity, Isabelle Huppert. Thus, we also need to take
into account those models that could be applied to those words and try to obtain
semantic information for these nodes.

We can also consider the models for the word in the sentence on which the verb
to play depends. In the example, applying a model for the verb to be may help
to determine the sense of the verb to play. Again, disambiguating any word which
could take part of all the models already considered can help to better apply those
models.
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In fact, we are calculating a closure over the grammatical relations, activating
all the models of the words which are in this closure (that is, the connected graph
which contains the target word). Notice that, in the current formalization, it does
no matter what the analysis and models of the first sentence of the example are,
as they are not connected to the target word (no referential analysis is performed),
they can not help in its disambiguation.

VI.2.2.1 Determining the applicable models to disambiguate a Word

Given a word in a sentence, we decide to retrieve only those models whose syntactic
head has the same lemma and PoS than the word. However, usually it is not the
case that we have enough models for all the senses of the words to be disambiguated.
Although it is reasonable to apply models associated to similar words to cover these
lack of models, it seems difficult to establish how to extend the set of models that
should be considered.

Many criteria can be devised, for instance based on the fact that the syntactic
head is not necessarily the semantic head, or that similar verbs could tend to have
similar behaviours. We could retrieve models where the word is doing the same
syntactic function (e.g. in the example sentence we can retrieve all the models
where play appears as modifier with the preposition as), or even retrieve all the
models from semantically related words (e.g. the variants of the same synset, Levin
Classes, etc).

VI.2.3 WSD Methods using pardon’s models

Having our srl models related to WordNet enables four different disambiguation
strategies, two of them supervised and two other unsupervised.

Next subsections will explain the different wsd strategies that can be used to
transfer sense information from the model which is being applied/identified to the
words in the input sentence. The first two strategies are supervised in the sense that
requires sense information associated to the model. On the other hand the last two
strategies are unsupervised. That is, they do not need any explicit sense annotation
of the models.

VI.2.3.1 Supervised Strategies

There are two supervised strategies for transferring the sense information from the
model to the words which are instantiating the model. The first, when the target
word is the head of the model being applied (supervised-head-disambiguation), and
the second when the target word is instantiating a role of the model (supervised-
role-disambiguation).

In a first case (supervised-head-disambiguation), as we are restricting the models
associated to a word to have the same lemma and PoS, the sense can be transferred
directly, from the model’s head to the word in the sentence.
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EAT#Vcat #1

#1

AGENT 

eats#Vdog#NThe#D a#D bone#N

dmod
dmod

fishdobj 

dobj 

dsubj 

dsubj 

PATIENT HEAD 

Figure VI.6: Model Matching

Figure VI.6 shows, when applying a model, how the sense information related
to the model’s head (i.e. eat#v#1 ) can be projected directly to the word in the
sentence (i.e. eats#v) to which the model is associated (thick line).

eat#vCAT#N#1

CAT#N#1

AGENT 

eats#Vdog#NThe#D a#D bone#N

dmod
dmod

fishdobj 

dobj 

dsubj 

dsubj 

PATIENT HEAD 

DOG#N#?

Figure VI.7: Role Matching

In a similar way, for the second case (supervised-role-disambiguation), figure VI.7
shows, when a applying a model, how the sense information related to the role agent
can be projected directly to the word in the sentence (dog) which is instantiating
that role. In this case, as the word in the sentence and the word in the model are
not necessary the same, in order to project the sense information we must determine
which are the senses of the word which are closer to the sense of the roles.

For instance, in the example it is necessary to determine which of all the posibles
senses of dog in WordNet (see figure VI.8) is closest to the sense of the role (that
is, cat#n#1, a feline mammal unable to roar). The distance between senses can be
calculated based on the different information relating senses encoded in WordNet:
That is, the WordNet hierarchy, glosses or relations, the tco, sumo, Domains, etc.
(see Chapter III for a complete overview of the current content of the mcr).
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WordNet sense Gloss
dog 1 domestic dog 1 a member of the genus Canis
frump 1 dog 2 a dull unattractive unpleasant

girl or woman
dog 3 informal term for a man

cad 1 bounder 1 dog 4 someone who is morally reprehen-
sible

pawl 1 detent 1 click 3 dog 5 a hinged device that fits into a
notch of a ratchet ...

andiron 1 dog 6 dogiron 1 metal supports for logs in a fire-
place

Figure VI.8: Senses for the noun dog in WordNet

VI.2.3.2 Unsupervised

The two strategies above are based on having our head or roles of the model an-
notated with sense information (that is, supervised wsd). However, two similar
methodologies using unannotated models can also be designed: unsupervised-role-
disambiguation and unsupervised-head-disambiguation.

eat#vCAT#N
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eats#Vdog#NThe#D a#D bone#V

dmod
dmod
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dobj 
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dsubj 

PATIENT HEAD 

CAT#N#?

DOG#N#?

Figure VI.9: Role Matching

Figure VI.9 shows the unsupervised-role-disambiguation, a similar case than the
one used when projecting the sense information from a role to the word of the input
sentence, but in this case, the role has no explicit sense information. Although,
comparing all the possible senses from the role against all possible senses of the
word which is filling the role, we can determine which pair of senses are the closest
and thus select a word sense for the word in the input sentence (and also for the
role).

As can be seen in figure VI.8, both cat and dog have different senses related to
animal and related to person. A semantic distance measure is not likely to determine
which pair of senses, the animal ones or the human ones, are better. However, it
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is important to notice that this sense projection will not be applied in isolation (as
a unique selectional preference) but as the same time that the whole model is being
applied. Moreover, other criteria, such as sense frequency, could be used to select
the right pair of senses.

cat INGEST#V

INGEST#V#1

AGENT 

eats#Vdog#NThe#D a#D bone#V

dmod
dmod

fishdobj 

dobj 

dsubj 

dsubj 

PATIENT HEAD 

EAT#V#?

Figure VI.10: Model Matching

On the other hand, as shown in figure VI.10 a similar case could also apply
for the head of a model. However, in order to apply new head-based strategies
(supervised or unsupervised) the lexical restrictions on the applicable models, that
is same lemma and PoS, must to be soften. For instance, we can consider applying
not only the models directly associated to the word but also the models which are
’closer’ to that word (e.g. from variants of the same synset, hypernyms/troponyms,
from verbs in the same levin’s class, etc). That would ease the lack of models but
also implies the activation of less accurate models.

Once relaxed the lexicalization constraint of the models, a similar strategy to the
unsupervised-role could be applied to the head. As shown in figure VI.10, if a role
from a model with a ‘closer-head’ could be instantiated, we can consider projecting
sense information from the head-model to the word in the sentence which instantiates
the head. These unsupervised-head-disambiguation strategies arise many issues,
such as: how much unsupervised models are useful, how the unsupervised models
interact with the supervised, how to keep the trade between precision and coverage,
etc, due to all these issues the head unsupervised strategies will not be addressed in
the current experiments.

VI.3 pardon’s Formalization for wsd

In the previous chapter, the input of pardon Semantic Parser was a sequence of
chunks. This time, we will feed pardon Word Sense Disambiguator with gram-
matical relations (dependencies). When using pardon for Semantic Parsing, the
solution (the roles and the diathetic model involved) was directly obtained through
the application of the models. Now, applying pardon’s Architecture to wsd, the
correct senses of each word are not only determined by the direct application of
a model for this word but also for the models where this word is playing a role.
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Models would have senses associated, to both head and roles. Thus, we would need
to add constraints to ensure the consistence between the models applied and the
sense selected.

VI.3.1 Knowledge Representation

Basically, the formulation is similar to the one presented in the chapter V. Regarding
the variables and labels in the clp, we will also use a triplet (role, model, object)
to identify a role from a model of an object. Similarly, since a clp always assigns
a label to all the variables; we will also use the two previously defined null-labels:
none for the model variables (objects which do not have/use a model, usually leaf
semantic objects with no sub-constituents) and the label top for the role variables
(objects not playing a role in the model of a higher constituent, e.g. the sentence
head).

VI.3.2 Attribute Representation

As an example, Figure VI.11 shows the clp variables and labels for the sentence
“The cat eats fish”. As we are focusing on wsd, the only dynamic attribute is the
sense. Thus, we have three variables per object, role, model and sense.

Variable Name Posible Labels

c1.pos∗ { NN1 }

c1.lemma∗ { cat }

c1.sense { cat#n#1, cat#n#2 ...}

c1.domain { Zoology, Factotum, Per-
son, Transport}

c1.model { NONE }

c1.role { ag.m1.c2, ag.m2.c2}

c2.pos∗ { VVZ }

c2.lemma∗ { eat }

c2.sense { eat#v#1, eat#v#2 ...}

c3.domain {Gastronomy, Chemistry,
Factotum, Psychology, Zo-
ology}

c2.model { transitive }

c2.role { TOP }

c3.pos∗ { NN1 }

c3.lemma∗ { fish }

c3.sense { fish#n#1, fish#n#2 }

c3.domain { Animal, Food}

c3.model { NONE }

c3.role { pat.m1.c3}

Figure VI.11: clp for The cat eats fish
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Regarding constraints, most of the formalization is exactly the same than in the
previous chapter. Thus, we will mainly focus on the differences.

VI.3.3 Role and Model Application

In order to apply the sim(Object, Role) measure we established a particular simi-
larity measure for each feature. Some of these measures can be defined ad-hoc and
each one could also be easily improved individually. However it is our belief that
since we are combining all these measures, the overall result will not improve dra-
matically. It remains as a future work to study this issue. Moreover, our final goal
is not to overtune the system but to prove the feasibility of the application of the
pardon’s architecture to different nlp tasks and not to build the best wsd system.

pardon uses both syntactic and semantic features:

• Syntatic Features:

– PoS: We compare the main category. However more complex simila-
rity functions between different CLAWS5 PoS tags can be defined (e.g.
according to the number of characters of the longest common prefix).

– Grammatical Relation: The grammatical relations used in Rasp [Car-
roll et al., 1998] are organised hierarchically: see Figure VI.12. The hi-
erarchy could be used to calculate the distance between two different
grammatical relations.

dependent

mod arg mod arg aux conj

subj or dobj
ncmod xmod cmod detmod

subj comp

ncsubj xsubj csubj obj clausal

dobj obj2 iobj xcomp ccomp

Figure VI.12: The grammatical relation hierarchy.

– Side: Whether the dependent is on the left side of the anchor or in the
right side.
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• Semantic Features

All the distances regarding semantic features are presented as sense com-
parison. The semantic measure used will be applied not just between two
sense/synsets/domains/etc, but also between a word an a synset/domain/etc,
or even between two words, by calculating the minimum distance between all
the senses of these two words. Although other approached are possible, e.g.
the distances between values can be defined based on the training examples
[Cost and Salzberg, 1993]), we will define the similarity base on the pre-existing
knowledge about the attributes (e.g. their hierarchical structure).

– Lexicographer File: Being the possible lexicographer files a small set,
we use the strict equality.

– Sense: WordNet can be used in many ways to calculate the semantic dis-
tance between two senses. There is an extensive literature2 on different
semantic measures using WordNet (e.g. [Agirre and Rigau, 1995],[Lea-
cock and Chodorow, 1998],[Resnik, 1995], [Wu and Palmer, 1994], [Lin,
1998], etc). However, we decide to use a fast and simple measure to cal-
culate this similarity: taking into account the level (from the top) of the
lowest common subsumer (LCS). That is the first common ancestor of
the two senses. In cases were there is no common ancestor (e.g. between
fish#n#1 and material#n#2) we consider this similarity null, so that the
constraint does not hold.

It is our believe that the level (from the top) is a good measuare for
how abstract is the common ancestor. Due to the different granularity in
the development of WordNet, it seems that the abstraction of the LCS
could be a better measure than other distances between concepts usually
calculated based on the number of edges of the path between the two
senses.

In order to normalize the measure and keep the scores in the range [0-1]
we take into account the depth of the hierarchy:

sim(a, b) =
level(LCS(a, b))

depth of hierarchy

For instance, the noun fish has two different senses (food and animal). In
order to determine which sense of the the noun fish is semantically closer
to the first nominal sense of meal we used the WordNet1.7 hierarchy to
calculated the semantic similarity between the two senses of fish and
meal#n#1. Figure VI.13 shows a piece of the WordNet 1.7 hierarchy.
It can be seen that substance#n#1 is the LCS between fish#n#1 and
meal#n#1 which is less abstract (lower position in the hierarchy) than
the LCS between fish#n#2 and meal#n#1 (that is entity#n#1). So

2For an extensive survey consult the Ted Pedersen’s bibliography recopilation at
http://www.d.umn.edu/˜tpederse/wnsim-bib/
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entity#n#1 abstraction#n#6

organism#n#1 object#n#1 relation#n#1

animal#n#1 substance#n#1 social relation#n#1

chordate#n#1 solid#n#1 communication#n#2

vertebrate#n#1 food#n#2 food#n#1 message#n#1

aquatic vertebrate#n#1 fish#n#2 nutrient#n#1 material#n#2

fish#n#1 meal#n#1

Figure VI.13: Example of semantic similarity over the WordNet hierarchy

that, the food sense of fish will be more similar to meal that the animal
sense.

– Domains: Domains are also organised hierarchically. The size (165 la-
bels) and depth (5 levels) of the hierarchy are smaller than WordNet’s
(around 100.000 labels and 15 levels). Thus, we decide to refine our mea-
sure. The previous measure does not take into account how much we
have to generalize to reach a common ancestor.

Specially in case that one concept subsumed the other. That is,
LCS(a, b) = a. Although it could argue that the concepts are similar
whatever the level of the concept a, we think that the similarity measure
should prefer closer subconcepts. Thus, we penalize the similarity accord-
ing to the number of nodes between a and b (that is, level distance(a, b)),
so the measure in this case is:

sim(a, b) = 1−
level distance(a, b)

2 ∗ depth of hierarchy

It can also be argued that not being prototypical examples, we probably
should also adapt the similarly measure for the case LCS(a, b) = b. That
is, when b is an hypernym (or supra-concept) of a. However, we think
that this will cause more over-generalization errors.
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– SUMO: sumo classes are also structured hierarchically. Although we
only take into account the subclass relation and ignore the ’type’ rela-
tionship. Using the same similarity function than for Domains seems to
perform better than using the strict equality.

– Top Concept Ontology: The expanded Top Concept Ontology as-
signed several labels to each WordNet sense (which may contain labels
which are subsumed). Since TCO set of labels is tiny and its hierarchy
is extremely flat (5 levels), we decide to use the strict equality.

Nevertheless, for simplicity, we have made an obvious simplification defining
our similarity measure to be calculated comparing slot to slot. Moreover, complex
multiple slot match functions could also be formalized in this framework.

VI.3.4 Model Application Constraints

We should establish a set of constraints to ensure the right application of roles and
models in isolation we should establish a set of constraints (model instantiation
Constraints).

• Model Support This set of constraints gives support to a model according
to its instantiated roles.

[cx.model = m] ∼ [cy.role = (r, m, x)] ∀(r, m, x) ∈ Roles, ∀y ∈ Obj

For instance, if the model eat-V4 has three possible roles ( ag-ent, pat-ient,
ins-trument), the constraint which supports this model according to the as-

signment of the role pat-ient will be [c3.model = eat-V4] ∼
1
3 [c3.role = (pat,

eat-V4, c2)]. The model will also have two similar constraints for the other
two roles. The support received for a model is normalized by the number of
its roles in order to not penalise small models. Thus, if we decide to give a
weight of 1 to the model support constraint, this weight will be divided into
the three support binary constraints corresponding to each role.

• Role Support The role support must take into account the senses which are
associated to the object. Thus we need to compare each sense of the object
with the possible senses of the role:

[c.role = (r, m, x)] ∼w [c.sense = s] ∀c, x ∈ Obj, ∀s ∈ c.sense

where w is simdyn between the senses of the object and the role (as defined in chapter IV).

For instance, the constraint [c3.role = (pat, eat-V4, c2)] ∼.245 [c3.sense =
fish#n#2] will give support to the assignment (pat, eat-V, c2) taking into
account the current weight of the assignment representing the sense fish#n#2
and their similarity with the sense/s of the role (pat, eat-V4, c2) (.245).
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VI.3.4.1 Sense Constraints

The following set of constraints ensures that when a model is applied, the senses
associated to this model are also selected, both for the head of the model and roles.
As the current formalization does not include any constraint that modifies Domain,
sumo or tco, these features do not need to be represented in the Clp and can be
considered as static.

• Head Sense Disambiguation This set of constraints associate the applica-
tion of a model with the selection of its sense for the head of the model:

[c.sense = s] ∼100 Orn
i=1 [c.model = mi] ∀s ∈ c.sense

where m1...mn is the set of models of c whose sense is s

For instance, the constraint [c2.sense = eat#v#3] ∼100 [c2.model = eat-V17]
or [c2.model = eat-V52] or [c2.model = eat-V50] would give support to the
assignment of the third sense of eat if any of the models associated to that
sense (that is, eat-V17, eat-V52 or eat-V50) is selected.

• Role Sense Disambiguation This set of constraints associate the sense of
the role with the sense of the object which fulfills the role:

[c.sense = r.sense] ∼w [c.role = (r, m, x)] ∀c ∈ Obj

where w is simstatic(cr.sense, rr.sense) and cr.sense and rr.sense are the repre-
sentation of the object and role associated to the sense r.sense.

For instance, [c3.sense = fish#n#2] ∼.2 [c3.role = (pat, eat-V4, c2)] will select
the second sense of fish if the object c3 fulfills the role pat-ient of model eat-
V4. The simstatic will be calculated comparing the attributes associated to
the object representing the second sense of fish and the role pat-ient of eat-V4
(which is 0.2).

VI.3.5 Structural Constraints

In order to gain flexibility on the type of models we can apply, the current formal-
ization we will relax the models. The new models do not determine which parts
are compulsory and which are optional. Thus, as there is no compulsory/optional
roles we must establish a different criteria for both Model Support and Model
Inconsistence.

• Role Uniqueness: A role can only be fulfilled by one object:

[cx.role = a] � [cy.role = a] ∀x, y ∈ Obj ∀a ∈ Roles | x 6= y
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This constraint will avoid, for instance, that in the example sentence, (“The
cat eats fish”), the object cat and fish fulfill the same role simultaneously.

• Model Inconsistence: A role can not be fulfilled by an object if the model
to which the role belongs is not being instantiated:

[cx.model = mb] � [cy.role = (r, ma, x)]
∀x, y ∈ Obj (r, ma, x) ∈ Roles(y) mb, ma ∈Models(x) | ma 6= mb

• TOP Uniqueness Only one TOP:

[cx.model = TOP ] � [cy.model = TOP ] ∀x, y ∈ Obj, x 6= y

• TOP Existence At least a TOP:

[cx.model = TOP ] ∼ @ [cy.model = TOP ] ∀x, y ∈ Obj | x 6= y

• NONE Support The model NONE is compatible with the inexistence of
the role assignments:

[cy.model = NONE] ∼ @ [cy.role = a] ∀y ∈ Obj

VI.3.6 Initial Labeling

As relaxation labeling is an algorithm with local convergence, one of the main issues
when using this algorithm is to establish the initial labeling from where the iterative
process starts. We initialize the role and model assignments according to the static
similarity function, while for the sense assignments we can uniformly distribute the
probability or use the sense frequency calculated on a particular corpus (e.g. SemCor
or the Senseval-II Lexical Sample Training corpus).

VI.4 Experiments

In order to prove the flexibility and robustness of our approach we applied our system
to the English Lexical Sample of Senseval-II. This tasks consists on disambiguating
the occurrences of 73 different words (noun, verbs and adjectives) in a corpus of 4,328
paragraphs. We choose this specific task because we plan to acquire the models from
the examples of the training corpora provided for the exercise and also because for
verbs, WordNet senses were not directly used in Senseval-III.

In order to apply our system to this task, we need models which contain syntactic
and semantic information about roles and about WordNet senses.
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On the one hand, as far as we are concerned there is no wide coverage resource
that can be used for this task. Although there has been remarkable efforts to relate
FrameNet and VerbNet with WordNet [Shi and Mihalcea, 2005], the coverage is still
very low even to the Lexical Sample task. Only 50 senses of the test are directly
associated to a FrameNet frame. That means, that even if our system was able
to disambiguated all the words perfectly, only 640 sentences of the 4,328 could be
solved correctly.

On the other hand, to automatically obtain models by parsing data which has
been semantically hand-tagged has a lot of drawbacks. The acquisition of this kind
of models has many difficulties. First, the lack of disambiguated corpus, or when
existing, their small size which makes impossible: a) to have a wide coverage of
WordNet senses and b) to have examples of all the possible syntactic subcatego-
rization patterns for a sense. Second, state-of-the-art wsd systems and parsers still
have significant error rates that machine learning algorithms can not cope with.

This chapter aims to demonstrate the robustness and flexibility of the pardon’s
architecture rather than to obtain a better than yours wsd system. Thus, although
its inherent complexity and the possible impact in the performance of the wsd

system, we decide to automatically acquire those models.
The next subsections will describe the general methodology used to obtain mo-

dels from semantically hand-tagged corpora and the models obtained applying the
general methodology to several concrete corpora.

VI.4.1 Obtaining Lexical Models for srl and wsd

In order to obtain models useful for both, srl and wsd from raw text (with full,
partial or null sense information) we can use the same pre–processing steps to obtain
lexicalized models. As described before, Rasp [Carroll et al., 1998] is used to extract
grammatical relations from the corpus (e.g. subj / obj / dobj) and then the resulting
data is enriched with all the semantic information gathered from the mcr.

Many times the corpora is not raw text and provides useful information (e.g.
tokenization, lemmatization, PoS, MWEs, NE information). However, to take ad-
vantage of this information is difficult because of the differences in: PoS sets, lemma-
tization (e.g. holy-of-holy vs holy-of-holies), the identification criteria and the set
of Multiword Expressions considered. As a simple example, the set of MWEs con-
sidered could differ greatly between a general corpus, WordNet and Rasp. This
differences could also have a large impact on performance of the different nlp pro-
cesses. WordNet MWEs can misled the PoS tagger, or even contractions such as
n’t splitted from the verb, which must be converted to not, in order to be correctly
interpreted by the parser.

Thus, although we process the corpus from scratch, we keep information about
the original information provided by the corpus (e.g. tokenization, lemmatization,
PoS, etc) in order to, later, look up the information from WordNet.

Once the sentence has been parsed, the set of dependencies extracted is used to
build the models in a straightforward manner. For each syntactic head, we build a
model containing the set of direct dependencies which arrive to it. No generalization
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process is carried out. As the state-of-the-art srl are far from being generally
applicable, we decide to simplify our models and take this set of relations as if they
were the set of roles of a model for this word.

For example, one of my favourite movies is the 1949 British
comedy “ Kind Hearts and Coronets ” , in which the entire
comedy is based on actor Dennis Price’s murdering eight titled
relatives (all <head>played</head> by Alec Guinness) be-
cause they snubbed his mother and stand in the way of his
acquiring the family title.

Figure VI.14: Senseval-II English Lexical Task Test Paragraph play.009 corres-
ponding to sense play#v#4

As an example, consider the sentence in figure VI.14 where there is only a dis-
ambiguated word (enclosed between the tag <head>). Then, a set of grammatical
dependencies related to the target is obtained using Rasp (see figure VI.16). Each
box in the figure illustrates the sets of words clustered by the grammatical depen-
dencies around a word (play, Dennis Price and relative respectively).

A lexicalized model for that word can be build extracting these sets of depending
words, that is, extracting for each content word all the direct grammatical depen-
dencies that point to it.

allplay#v#4 Alec Guinness

ncmod(by)

mod

Dennis Price

ncsubj

MODEL-play.009.w38 for verb to play

actor Dennis Price

MODEL-play.009.w30 for the noun actor 

mod

play#v#4Dennis Price

ncmod

ncmod

title
relative

MODEL-play.009.w35 for verb relative

ncmod

Figure VI.15: Models for the words play, relative and Dennis Price obtained from
the senseval example play.009

Figure VI.15 shows the three different models obtained using this approach.
The model play.009.w38 for the verb play which only has its head disambiguated
(in green), a model for the noun relative, named play.009.w35, which only has one
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of its role disambiguated (in green) and a model for the proper noun Dennis Price,
play.009.w30, with no explicit sense information. These examples illustrate the
three different types of models which could be obtained (head-disambiguated, role-
disambiguated, no-sense-information) and whose applicability depends on the se-
lected wsd strategies.

All

play#v#4

Alec Guinness

ncmod(by)

mod

Dennis Price

ncsubj

play MODEL

actor

Dennis Price MODEL

mod

ncmod

ncmod

titlerelative

relative MODEL

ncmod

Figure VI.16: Extracting models from a set of dependencies

Another big difference with respect the srl system, is that the models are not
necessarially mutually exclusive. That is, two models could be different realizations
of the same subcategorization frame or even be exactly equal. However, it can
not be easily determined whether the two models obtained are part of the same
subcategorization frame or not. Thus, we decide to formalize them as mutually
exclusive.

VI.4.1.1 Extracting Models from several sense-tagged corpora

Although the proposed architecture allows the integration of wsd and srl, the
lack of wide coverage resources for srl which can be related to WordNet synsets
has forced us to acquire automatically the lexical models needed to carry out these
tasks. Even though the models acquired are based not on semantic roles but on syn-
tactic dependencies, they allow to test the flexibility and robustness of our approach
against a well established wsd task.
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The models used in the experiments have been obtained from two corpus with
different characteristics. On the one hand, we used the Senseval-II training cor-
pus for the English Lexical Sample task whose 8,611 examples have only one word
disambiguated. On the other hand, we used SemCor [Miller et al., 1993], which is
a subset of the Brown Corpus (about 250,000 words), consisting of texts that have
been tagged with PoS information and semantic information.

SemCor was semantically annotated with WordNet-1.6 senses including Named
Entities and MWEs, and actually, automatically mapped to WordNet-1.7, WordNet-
1.7.1 and WordNet-2.03. We should keep the original tokenization in order to be
able to recover the semantic information (synsets) after the parsing.

The Senseval-II lexical sample corpus is provided without any kind of pre-
processing (tokenization, Named Entity Recognition and classification, detection of
MWEs4, etc). Thus, our preprocessing could bias greatly the results, as we will be
evaluating not only the performance of the wsd system, but also the performance of
our preprocessors. That is, how good are our tokenizer, PoS Tagger, lemmatizer,etc).

#models #models-senses-in-test #sense-head #sense-role
SemCor 246,083 1,015 667 348
Senseval 75,707 13,068 6,073 6,995

Table VI.2: Models acquired for the 73 words included in Senseval-II test corpus

Table VI.2 shows the figures for the models obtained from each corpus, the
amount of models obtained (#models), as well as the models containing any of
the senses of the 73 words to be disambiguated in the Senseval-II test corpus
(#models-senses-in-test). Finally, it appears their distribution, that is whether the
sense information is placed on the head (#sense-head) or in a role (#sense-role). As
expected, the sense distribution and coverage of the models obtained are different for
SemCor and the Senseval-II training corpus. While the models obtained from the
Senseval-II training corpus are distributed among all the senses in the test corpus,
the models obtained from SemCor are associated to the most frequent senses and
have a partial coverage of the senses involved in the Senseval-II English Lexical
Sample task. The 1,015 models obtained from SemCor for supervised-wsd not only
are few but also cover few senses (126 different senses, 71 sense-head and 55 role-
sense). That is less that 29% of 436 senses which appears in the test.

3http://www.cs.unt.edu/~rada
4Although target phrasal verbs are tagged



128 A pardon prototype for Word Sense Disambiguation

There are many differences between the Lexpir subcategorization models used
in the previous chapter and the models we obtained from sense-tagged corpora.
Even their roles are fully disambiguated (e.g. the models obtained from SemCor),
they are less rich than the Lexpir models in the sense that they do not contain
information about compulsory or optional roles.

I have observedobserve#v#1 that beingbe#v#3 upup#r#1 on
a horsehorse#n#1 changeschange#v#2 the wholewhole#a#1

charactercharacter#n#3 of a manman#n#1, and when a
veryvery#r#1 smallsmall#a#1 manman#n#1 isbe#v#3 upup#r#1 on
a saddlesaddle#n#1, he’d likelike#v#1 as not preferprefer#v#2 to
eateat#v#2 his mealsmeal#n#1 therethere#r#1

Figure VI.17: Sentence example from SemCor brown1/br-k09.xml p4 s9

Figure VI.17 shows a sentence from SemCor. The main difference from the
Senseval-II English Lexical Sample is that all the content word are disambiguated.
Thus, most of the models are fully disambiguated. Figure VI.18 shows the model
obtained for eat#v#2 from the SemCor sentence above, where all the model items
have a unique sense and provide acess to the semantic information from the mcr.

eat#v#2

meal#n#1

dobj mod 
HEAD 

Domain

Sumo

Tco

Gastronomy 
Eating 
Location Physical Purpose

UnBoundEvent Usage 
there#r#1

Domain

Tco

Factotum 

PositionalAtrribute

Entity 

Figure VI.18: Extracting models from SemCor
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VI.4.1.2 Collapsing models per sense

Since we are obtaining models automatically, we should cope with errors or missing
syntactic dependencies coming from complicated sentences. Moreover, we have no
clear clues of the relevance of a role in the model (e.g. adjunts vs. arguments) or
whether the models obtained belong or not to the same diathetical models.

Sense Examples Models Head-Wsd Role-Wsd

play#v#1 23 33 17 16

play#v#2 25 40 23 17

play#v#3 2 3 2 1

play#v#4 12 25 11 14

play#v#5 19 32 17 15

play#v#6 5 9 5 4

play#v#7 4 7 4 3

play#v#8 2 3 2 1

play#v#9 3 3 3 0

play#v#15 3 4 3 1

play#v#16 4 7 4 3

play#v#17 9 12 6 6

play#v#20 1 1 1 0

play#v#22 1 1 1 0

play#v#23 1 (2) (1) (1)

play#v#25 1 2 1 1

play#v#28 1 2 1 1

play#v#29 2 4 2 2

play#v#31 1 4 1 3

play around#v#1 1 0 0 0

play down#v#1 5 0 0 0

play out#v#2 1 0 0 0

play out#v#3 1 0 0 0

play out#v#4 1 0 0 0

play up#v#1 1 0 0 0

Table VI.3: Number of examples for play in the Senseval-II training corpus

The numbers of models associated to a sense vary greatly not only among words
but also for a given word as the training corpus reflects the sense frequency. For
instance, table VI.3 shows the sense distribution of the models obtained from the
Senseval-II lexical sample training corpus for the verb to play5.

5The models for play#v#23 are inconsistent because the lemma is recognized as a MWE
(play round). We did not obtain any model for MWEs incluing play.
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Figure VI.19: Models obtained for play#v#3

play#v#3

   He
 

superblymod ncsubj 
HEAD 

play.022 + play.116

   who
 

Figure VI.20: Model obtained by joining all the models for play#v#3

The pardon’s formalization establishes that all the models are incompatible
among them. In order to soften these problems, we joint all the models of a word
sense in a single one. To illustrate this process, we will describe a simple example of
joining two of the models shown in Figure VI.19 obtained from the training examples
play.022 and play.116. We will restrict the joining of the models to those with the
same sense head (lemma, PoS and word sense). Thus, we can join the incomplete
model obtained from play.166 with the model obtained from play.022 whose head
is play. Figure VI.20 shows the model resulting from joining the two models. This
join is carried out without generalization by simple adding the union of roles (which
will be calculated as an or).
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VI.5 Results

This section analyses the results using pardon on the Senseval-II English Lexical
Sample task. First, pointing out some relevant issues about the task and its evalu-
tion, then presenting the upper and lower bounds of the system, and finally present
the results for the different experiments carried out.

VI.5.1 Senseval-II Evaluation Issues

There are several issues that can mislead our evaluation of the Senseval-II English
Lexical task:

• MWEs: The systems have to tokenize and recognise multiwords (most of them
having low ambiguity figure). Given than for some test words the number of
multiwords involved could be around 50%, the results of a system could be
greatly affected by the preprocessing. Both because it could not recognize
MWE senses and because it may happen that the system votes for MWE
senses where there is not a MWE. It could penalize a good wsd system if it is
unable to deal with MWEs. Notice that currently the preprocessing used in
pardon can not deal with discontinuous multiwords (e.g. phrasal verbs).

• Special votes: In the Senseval-II English Lexical Sample task, the systems
were allowed to vote for ProperNouns (P) and Unknown senses (U). The first
could eventually increase the scores of a system with a good NE recognition
(or viceversa), while the second could increase the noise in the system as
‘Unknown’ examples in the training could be ignored or not.

• Inconsistencies in the training data: There are a few inconsistencies in the
data. For instance, there are few senses which appears in the test but not in
the training data, senses which are not codified in WordNet1.7 or incosistencies
due to the American versus British spelling (e.g. colorless vs colourless). These
inconsistencies are fully listed in appendix E.

• Processing issues: There are quite a few typographical tags in the training
corpus (not always consistent) that difficults greatly the preprocessing (spe-
cially the syntactic analysis of the text).
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VI.5.2 Baselines and Upper bounds

We established two different baselines based on the Most Frequent Sense. The
frequency information will be used to determine the initial state in the relaxation
labelling but using no model. Thus, the program converges to the most frequent
senses. Table VI.4 shows these baselines using frequencies calculated using WordNet
frequencies (MFS SemCor) or using the frequencies from the training data of the
Senseval-II English Lexical Sample task (MFS training).

Fine Coarse

P R F1 P R F1

PARDON-MFS Training 47.0 46.2 46.6 53.9 53.1 53.5

PARDON-MFS SemCor 40.8 40.1 40.4 50.0 49.0 49.5

Table VI.4: Baseline using MFS for Senseval-II English Lexical task

We are also able to establish some upper bound for the system considering the
existence of an applicable model or role of the correct sense. That is, checking for
each test sentence, if there is at least an “applicable” role (supervised-role-WSD) or
head (supervised-head-WSD).

On the one hand, regarding supervised-head-WSD, an upperbound can be cal-
culated based on the existence of a model of the correct senses (without taking into
account whether the model can be applied in the current sentence).

On the other hand, regarding supervised-role-WSD, since we require the objects
to have the same syntactic relation and anchor than the role they are instantiating,
an upper bound can be calculated based on the existence of a role corresponding
to the right sense with the same syntactic relation-anchor. However, the real upper
bound is even lower, as we are not taken into account the cases where the model to
which the role belongs would be retrieved for the input sentence6.

Strategy Upper Bound
head supervised 49% (2,122)
head (pre-process) 71% (3,081)
head-role supervised 60% (2,628)
head-role (pre-process) 87% (3,793)

Table VI.5: Upper Bounds using the Senseval-II Training

Table VI.5 shows the different upper-bounds of pardon using the models from
the Senseval-II training data. Using supervised strategies the system could not
perform up to 60% (49% using only head-sense supervised strategies and 60% using
only the role-sense supervised strategy). The limit when using unsupervised strate-
gies it is far more complex as it will imply knowing whether we consider that two
senses are similar. Thus, it could be only estimated in coarse grained manner on

6That is, if the head word of the model appears in the input sentence and it is also tagged with
the same PoS
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the base of some of the pre-processing information. Even considering that our sys-
tem have a perfect semantic distance measure and that if there exists a role having
same syntactic relation and anchor than the word to be disambiguated the semantic
distance will select the correct sense, our system can not reach 87%.

VI.5.3 Results using the models acquired from English Lexical Sample
training corpus

Using the models obtained from the English Lexical Sample training corpus, different
experiments have been performed. First, we studied the impact of the integration
of different knowledge (Knowledge Integration), second we compared the results
obtained using different training corpora. We also compared the results obtained
with the systems presented at the competition the Senseval-II English Lexical
Sample competition.

In all these experiments, we constrained the object that could instantiate a role
to those whose syntactic relation and preposition is the same. This restriction is
probably too strong and drastically reduces the improvement of the results when
using more semantic information.

Using the models obtained from the English Lexical Sample training corpus, the
system is unable to decide a sense for 1,979 sentences out of 4,328. Although the
general figures are quite far from the wsd systems that attends the Senseval-II

English Lexical Sample task (shown in table VI.21) which are around 64% in fine
Precision and 71% in coarse Precision.

Figure VI.21: Senseval-II English Lexical Task Results
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VI.5.3.1 Impact of the Knowledge Integration

The first set of experiments aims to explore the impact of the integration of different
semantic knowledge. Thus, different experiments have been performed, varying the
level of semantic information used to determine the similarity between object and
role. In order to stress the impact of the semantic information, for these experi-
ments all the senses were instantiated with the same probabilities (PARDON-UFS)
and without collapsing the models. Head and Role disambiguation strategies were
used without generalization on the anchor neither the syntatic dependency was per-
formed.

Semantics Fine Coarse

LF Wn SUMO Domain TCO P R F1 P R F1

37.0 26.2 30.7 47.1 33.4 39.1

x 37.0 26.8 31.1 47.2 34.2 39.7

x 38.6 27.4 32.0 48.7 34.7 40.5

x 38.7 27.4 32.1 48.6 34.5 40.3

x 42.5 29.8 35.0 52.5 36.9 43.3

x 42.8 30.1 35.3 53.0 37.2 44.0

x x 43.8 31.8 36.8 53.3 38.7 44.8

x x x 43.6 31.7 36.7 53.3 38.7 44.8

x x x x 43.5 31.6 36.5 53.3 38.7 44.8

x x x x x 41.8 29.3 34.4 51.6 36.1 42.5

Table VI.6: Results for Senseval-II English Lexical Sample task

Table VI.6 shows the figures obtained for the Senseval-II English Lexical Sam-
ple task according to the official scorer for the different experiments. The first row
in the table corresponds to the use of pardon without any semantic information,
the second row to the fifth row, correspond to the results using only one semantic
resource: the Lexicographer File (LF), the hyperonym information from WordNet
(Wn), the sumo attribute, the Domain attribute and the Top Concept Ontology
attribute (TCO). Finally from the sixth row to the ninth row show the results
obtained when using more attributes incrementally.

The results show that combining different semantic attributes the system im-
proves, although the combination of all the semantic attributes seems to perform
worse than combining two or three attributes. This behaviour could be explained
by the fact that most of these resources are not orthogonal. The fact that the
coarse evaluation is almost the same when combining more than one semantic re-
source points that we are probably changing the votes between senses that are closer
(coarse evaluation is the same). This also may point that the current system relies
too much on the syntactic information. Whether we do not have enough examples
of different syntactic behaviours of a word or there is a need of some more flexibility
in the application of the syntactic constraints (that is, the preposition and syntactic
dependency).
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VI.5.3.2 Impact of the training corpora

In order to compare the impact of the models acquired from different corpora, we
run the experiment using all the semantic attributes using the models obtained for
Semcor and the models obtained for the Senseval-II English Lexical Sample. Table
VI.7 shows the results (Precision and Recall) obtained for the Senseval-II English
Lexical Sample test using the models obtained from SemCor or the Senseval-II

training corpus respectively.

Models
Senseval SemCor

P R F1 P R F1
41.8 29.3 34.4 28.3 15.9 20.4

Table VI.7: Results in Fine Precision and Recall

Although at a synset level, the results of the system seem to be modest, when
using the coarse grained evaluation of Senseval-II our system reach the 51.6% of
precision (41% using SemCor). We believe that this big difference in the figures is
due to the lack of applicable models of the right sense, specially when using SemCor
(a close-world-assumption is implicit in our formalization and the system chooses
the most similar model among all the applicable models).

This relatively poor figures are due to limitations of the current system (e.g.
current system depends completely on having a dependency analysis, it is unable
to detect discontinuous MWEs, etc.), limitation on the context of the sentence and
limitation of the models used. Moreover, pardon has a wider scope for wsd, in
the current system all the WordNet senses are taking into account not only those
senses which appear in the training data but all the WordNet senses. Senses which
do not appear in the training data should not appear in the test data7. The lack
of applicable supervised models, could drive pardon to vote for senses which do
not appear in the training data by means of unsupervised heuristics. Although it
is quite an ad-hoc and unrealistic over-tune, it will be possible to restrict the set of
senses taking into account for the target words.

We consider that the results obtained prove the feasibility of our approach, al-
though they are slightly below the state-of-the-art of wsd. Moreover, we should take
into account than we have made no tuning (neither on the attributes nor on the si-
milarity functions) and that the models used in the experiments where obtained
fully automatically.

7See the Appendix E for a list of some of the inconsistences found in the test data
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VI.5.3.3 Comparing with the Senseval-II English lexical task participants

Table VI.8 shows a comparison per PoS of pardon and some of the six best systems
that participate in the Senseval-II English Lexical Sample task.

Verbs Nouns Adjectives
P R F1 P R F1 P R F1

JHU(R) 56.6 56.6 56.6 68.2 68.2 68.2 73.2 73.2 73.2
SMUls 56.3 56.3 56.3 69.5 6.95 69.5 66.8 66.8 66.8
KUNLP 57.6 57.6 57.6 66.8 66.8 66.8 66.8 66.8 66.8
CS224n 52.3 52.3 52.3 68.3 68.3 68.3 61.6 61.7 61.6
Sinequa 53.5 53.5 53.5 63.3 63.3 63.3 66.4 66.4 66.4
Talp 51.3 51.3 51.3 65.5 65.5 65.5 64.5 64.5 64.5
PARDON-UFS 47.1 37.7 41.9 47.9 34.3 38.7 47.4 31.5 35.2
PARDON-MFS 46.4 40.1 43.0 55.7 53.6 54.6 60.7 54.2 57.3

Table VI.8: Results in Precision and Recall for each PoS

For this comparison we use two versions of pardon using the collapsed models.
PARDON-UFS which initializes all the senses with the same initial probability and
PARDON-MFS training which initializes the senses using the sense frequency of
the Senseval-II Lexical Sample task training corpus. PARDON-MFS training
reaches a 52.9% Precision and 48.1% still far from the best wsd system.

pardon seems to have similar figures for all the different PoS although we expect
the results to work better on verbs. Moreover, we should take into account that
we did not define a semantic distance for adverbs and that our current system is
relatively poor-informed for adjectives.

However, when using Most Frequent Sense information, the results increase in
precision and recall for adjectives and nouns. For verbs, it decreases minimally the
precision although the recall improves.

Regarding the particularities of the Senseval-II English lexical task, [Escudero
Bakx, 2006] makes a deep study on the impact in the evaluation of the MWE,
Proper Nouns and Unknown votes. As pardon almost does not vote models for
ProperNouns nor Unknown senses, we will only make a brief study on the MWE
issue.
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We divided the study between noun and adjective MWEs and phrasal verbs as
the last ones are tagged on the test corpora. On one hand, table VI.9 shows the
results for noun and adjectives MWEs. It can be seen that pardon has a relatively
low precision on MWE identification but an F1 on average. On the other hand,
table VI.10 shows the results for phrasal verbs. Since pardon does not use the
information about phrasal verbs, the figures are much worst than the ones obtained
by the other systems.

P R F1 Ok Att

JHU(R) 85.8 74.7 79.9 127 148
SMUls 88.8 68.0 77.0 151 222
KUNLP 53.9 48.4 51.0 83 154
CS224n 78.4 34.1 47.5 58 74
Sinequa 90.3 54.7 68.1 93 103
Talp 89.3 54.7 67.8 109 122
PARDON-MFS 67.3 57.7 62.1 101 150

Table VI.9: Results in Precision and Recall for MWEs

P R F1 Ok Att

JHU(R) 66.5 65.4 65.9 119 179
SMUls 58.0 57.7 57.8 105 181
KUNLP 49.8 58.8 53.9 107 215
CS224n 43.0 26.9 33.1 49 114
Sinequa 59.5 42.9 49.8 78 131
Talp 45.5 39.0 42.0 71 156
PARDON-MFS 53.8 19.2 28.3 35 65

Table VI.10: Results in Precision and Recall for Phrasal Verbs

VI.6 Discussion

We have shown that it is possible to develop a robust and flexible architecture for
Semantic Role Labeling using Csp techniques and that it can be solved efficiently
using well-known optimization algorithms (such as relaxation labeling algorithms).
Moreover, this formalization can be extended to other models that combine syntactic
and semantic information (e.g. PropBank or FrameNet).
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In this chapter we presented an integrated architecture where both srl and wsd

tasks can collaborate. The system has been tested in a wsd task (Senseval-II

English Lexical Sample) using automatically acquired models.
Future lines of research include, first to extend the level of integration between

Srl and wsd using richer semantic models, and second to improve the system itself
(e.g. tuning the similarity functions, propagating semantic information, etc).

On the other hand, models obtained automatically suffer several limitations and
do not always allow to build an adequate semantic representation. For instance, for
a piece of sentence like ... clean dental surface ... with a the dependency analysis (
dental — mod→ surface —dobj→ clean), the system will build a misleading semantic
representation. The fundamental piece of information that a dental surface is also a
body part is not captured by our models obtained automatically. Conversely, more
simple wsd systems, such as the ones using a bag of words, are able to capture and
use that relation.

As a consequence the verb clean in this sentence will be wrongly disambiguated,
as the models associated to clean#v#3 (to clean a house) are the ones more related
to clean a surface. On the other hand, the current prototype makes a shallow
integration of the syntactic and semantic levels, causing the system to be sensitive
to errors in the syntactic analysis. That is, being unable to disambiguate a word if
a dependency analysis was not obtained for the input sentence.

Regarding the models acquired for SemCor, although fully disambiguated, they
do not provide enough coverage. This sparseness makes more difficult to cope with
inconsistencies or errors from the corpus.

The disambiguation capability of the system also depends greatly on the infor-
mation available to discriminate the senses. Thus, it could be difficult to be able to
distinguish between senses whose mcr representation is almost the same (e.g. the
five senses of child).

Moreover, SemCor and SENSEVAL sentences are usually very complex. In our
formalization syntax biasses too much our model application, over-constraining the
semantic generalization process. The current system is also unable to deal with
diathesis or with syntactic structures that are not present in the models.

Using only the models obtained from SemCor, the results are hard to compare
with other wsd systems, as our coverage of the models per sense is poor, and this
has a great impact on the performance, as it can not be known in advance for
which sentences we do not have models of the correct sense. On the other hand,
combining the current model with other wsd heuristics, (e.g. Domain based wsd)
could increase greatly our coverage.

However, either increasing the coverage of the models, or improving the wsd

rates are out of the scope of this thesis. The results obtained are good enough to
demonstrate that the pardon architecture is applicable.
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VI.6.1 What pardon can not do

• To overcome errors from the preprocessing steps (e.g in the PoS, the lemma-
tization or the tokenization).

• To disambiguate senses from which the system do not have an example. Al-
though the current version of pardon can use unsupervised techniques based
on examples from other words to solve unseen senses, that hardly happens
when using the Senseval-II Lexical Sample training data due to its small
size and its biases.
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Figure VI.22: Different senses for the noun child in the WordNet hierarchy

• Disambiguate words whose syntactic behaviour does not vary and whose senses
are similar according all the semantic information of mcr (that is, the WordNet
hierarchy and all the different semantic resources, sumo, tco, Lexicographer
Files, Domains).

For instance Figure VI.22 shows the six different senses of the noun child in
the WordNet hierarchy and their associated semantic information. It can be
seen that they almost share all the semantic attributes from mcr (that is,
sumo, Domains, etc) and its position in the WordNet hierarchy (all senses
as descendant of person#n#1 does not help much to disambiguate them. In
most cases, discourse, extra-sentencial knowledge or statistical knowledge (e.g.
frequency, co-occurrences) will be needed to disambiguate among these senses.

• The most important limitation of the currently prototype is that we only
use information from words which have a direct syntactic connection. Thus,
contextual information outside the sentence boundaries or even with elements
which are not directly linked to the word to be disambiguated is not used.
Consider the sentence example from the test corpus shown in Figure VI.23
where the semantic information carried by the word film could not help the
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disambiguation of the word play as there isn’t any direct syntactic relation
between them.

...
As presented by Mr. Chabrol, and <head>played</head>

with thin-lipped intensity by Isabelle Huppert, Marie-Louise
(called Marie Latour in the film) was not a nice person.
...

Figure VI.23: Sentence example from Senseval-II English Lexical Sample test
(play.131)

All that could also explain the relatively poor performance of the wsd system
for the Senseval-II English lexical sample task. Although, our aim was to prove
the feasibility of our approach, it is our believe that the pardon framework can be
enriched with more broad coverage heuristics.



CHAPTER VII.

Conclusions and Future Work

“All progress is precarious, and the solution of one problem brings us

face to face with another problem.”

Martin Luther King Jr. (1929 - 1968) “Strength to Love”

“ Th...th...that’s all folks ! ”

The Porky pig

This thesis has explored a new integrated architecture for robust nlu, exploiting
constraint-based optimization techniques. The goal of this work is to find robust and
flexible architectures able to deal with the complexity of advanced nlp. We have
succesfully used the pardon’s architecture using the relaxation labeling algorithm
in two different nlp tasks, namely, srl and wsd.

This chapter is organised in two sections. The first one summarises the con-
tributions of this thesis and the second one outlines the future research directions
outcoming from this work.

VII.1 Contributions

The main contributions of this thesis are:

VII.1.1 Proposing a novel NLP Architecture

We have proposed a novel architecture named pardon, which is orthogonal to the
traditional nlp task decomposition, and applies different types of knowledge (syn-
tactic, semantic, linguistic, statistical) at the earliest opportunity but retaining an
independent representation of the different kinds of knowledge. pardon aims to
give a general framework in which different nlp tasks can be formalized homoge-
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neously. The framework allows different ways to perform nlp tasks: independently
or simultaneously (following an integrated approach).

pardon’s architecture is based on the idea of compositionallity. An element
combines itself with other elements to build a new element. In most cases, the new
element shares or contains the representation of the combined elements. Elements
can not be freely combined. The correct combination of elements is determined by
models and these models are associated to the initial elements.

The final goal of this architecture is to be flexible and robust using a frame-
like semantic representation, as well as the compositional and pattern matching
process of pardon’s architecture. pardon’s architecture can be formalized as a
clp, profiting from of the robust properties of the optimization techniques that
could be applied to solve clp problems.

VII.1.2 NLU Knowledge Integration

We have adopted a hybrid and simple approach. No claim of completion will be
made. Different resources, knowledge repositories, are different views of the lan-
guage. None of them can claim to cover completely the richness of the language.
All these knowledge sources do not need to be either equivalent or even compatible
as they will stand as independent information.

Different semantic resources, such as ontologies (Top Concept Ontology, sumo),
lexical databases (English WordNet, Spanish WordNet, Extended WordNet, differ-
ent versions of Princeton WordNet), domain classifications, and sets of selectional
preferences, have been uploaded to build a multilingual knowledge base based on
the EuroWordNet structure, the Multilingual Central Repository (mcr).

pardon’s architecture gives us a natural way to integrate different knowledge
sources, as a set of constraints inside a clp, in order to solve different nlp tasks.
The only condition required is that different knowledge sources may be related to
each other (as it is inside the mcr through the ILI record). Despite the integration
effort inside the mcr, since these different knowledge views are usually incompatible
or contradictory, clp will also give us a natural way to integrate them. Then, nlp

tasks will be faced as an optimization problem, transforming the appropriate pieces
of knowledge into a set of constraints and trying to find a solution that satisfies
them, to a possible maximum degree.

VII.1.3 NLU Process Integration

pardon’s architecture is based on the idea of compositionallity. An element com-
bines itself with other elements so as to build a new element by means of models.
pardon proposes a formalization in a clp framework which integrates the frame-like
Knowledge Representation, the Model Application (that is the application of
a model in isolation) and an Inference Engine which decides how to recursively
apply the models.

Roughly speaking, pardon combines objects from one level in order to build
the objects corresponding to the next level of the task under consideration. The
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resulting object is calculated simultaneously with the task of determining which
models are to be applied to find the best solution (in a similar way to Hearst’s
Polaroid Words [Hirst, 1987]).

This integration of processes suffers from an explosion of possibilities to be ex-
plored due to its inherent combinatorial complexity. Amalgaming the search space
and using optimization techniques such as relaxation labeling can soften this prob-
lem, but the complexity of the problem can not be avoided.

VII.1.4 Use of Optimization Techniques in NLU

The use of optimization techniques in spoken and written language processing has
developed rapidly during the last years in conjunction with the statistical methods.
Optimization methods are used to find the best solution among all the possible
solutions by applying some evaluation criteria. Since the number of possible solu-
tions can be large, the search needs to be highly efficient. In this thesis we have
demostrated that it is possible to use optimization techniques at a large scale in
nlp.

VII.1.5 Robust NLU

Robustness has always been an important problem in nlp. Statistical methods are
often presented as its only solution. However, in recent years, linguistic formalisms
have also been aiming robustness using non-atomic information encoded in feature
structures. Such fine-grained structures needs a relaxation in the unification mecha-
nism. The subsequent growth in the search space is controlled by a selective form of
success (not everything can be unified), and by measuring the ‘goodness’ of interme-
diate parsing results. The work in this thesis integrates succesfully both approaches,
statistical and linguistic, towards robustness.

VII.2 Further Work

VII.2.1 Regarding pardon’s Architecture

Regarding pardon’s Architecture, there are still many open issues to explore and
test. The use of other optimization techniques to solve clp/csp (such as dynamic
csp), the integration of multiple levels of nlp, e.g. PoS and Parsing, or Parsing and
wsd, or the application of pardon to other nlp tasks: MWE detection, Parsing,
Anaphora resolution, etc.

VII.2.2 Regarding pardon as a Semantic Parser

Our approach to Semantic Parsing is basically a semantic role labeler. Further work
should include a more realistic evaluation of the system, using a larger corpus with
sentences having multiple verbs (maybe using models and corpus related to other
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lexical resources available for English such as FrameNet or PropBank). In this case,
verbal models would compete for their arguments in a sentence.

We also plan to include more statistical knowlege (measures/language models)
and to extend the coverage and expressiveness of the subcategorization models.
Exploting the integration of other semantic resources related to Wordnet (e.g the
Multilingual Central Repository [Atserias et al., 2004f], developed inside the Mean-

ing Project1 [Rigau et al., 2002] which contains selectional preferences automatically
acquired from corpora) is also amog our plans for future work. Furthermore, the
output of the current system could be also used to improve the existing verbal
models.

Finally, the exploration of linguistic and statistical models for the identifica-
tion/distinction of verbal adjuncts should also be investigated, since it seems to be
one of the main causes of verbal argument mis-identification.

VII.2.3 Regarding pardon as a Word Sense Disambiguator

Future lines of research in this regard include, first, extending the level of integration
of Semantic Parsing and Word Sense Disambiguation using richer semantic models,
and second, improving the system itself (e.g. tuning the similarity functions, prop-
agating semantic information, etc).

The most important limitation of the current prototype is that, in order to dis-
ambiguate a word, we only use information from words which have a direct syntactic
connection with it. Thus, contextual information outside the sentence boundaries
or even with elements which are not directly linked to the word to be disambiguated
is not used. A short-term future work will combine other wsd methods (e.g. wsd

based on Domains [Magnini and Strapparava, 2000]) with the pardon framework
to overcome this problem.

The current pardon prototype for wsd could be also used to explore unsuper-
vised wsd and related issues such as how to integrate supervised and non-supervised
models or which models should be activated for a given word.

1http://www.lsi.upc.es/~nlp/meaning/meaning.html
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Klaus Zechner and Alex Waibel. 1998. Using chunk based partial parsing of
spontaneous speech in unrestricted domains for reducing word error rate in speech
recognition. In Proceedings of the International Conference on Computational Lin-
guistics (COLING-ACL’1998).

Wendy-M. Zickus. 1994. A Comparative Analysis of Beth Levin’s English Verb
Class Alternations and WordNet’s sense for the verb classes Hit, Touch, Break and
Cut. In Proceedings of The Post-Coling’1994 International Workshop on Directions
of Lexical Research.



164 BIBLIOGRAPHY



APPENDIX A.

Author’s Most Relevant Publication

A.1 Book Chapters

•

Jordi Atserias, Salvador Climent, Xavier Farreres, German Rigau and
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APPENDIX A.

Consistent Labeling Problems and Relaxation

Labeling

This appendix will briefly introduce the formulation of Consistent Labeling Problems
(clp) and the relaxation labeling algorithm used in this tesis to find the local most
consistent solution of the formulated clp.

A.1 Consistent Labeling Problems

A natural way to model Constraint Satisfaction Problem (csp) is the Consistent
Labeling Problems (clp) [Messeguer and Larossa, 1995]. A Consistent Labeling
Problem basically stands as the problem of finding the most consistent assignments
of a set of variables, given a set of constraints.

Both, clp and csp are been successfully used in several NLP task, Part of
Speech tagging [Pelillo, 1991], [Pelillo and Refice, 1994], [Padró, 1998], for parsing,
using Constraint Grammars [Voutilainen and Padró, 1997] and Weighted Constraint
Dependency Grammars (WCDG), ([Schröder, 2002], [Daum et al., 2002] [Foth et al.,
2003] [Daum, 2004] which uses constraint optimization techniques to integrate deep
and shallow parsing techniques for German). But also to more complex task such as,
Machine Translation (Mikrokosmos [Beale, 1996]) or Text planning (Iconoclast1

[Kibble and Power, 2000]) or mapping taxonomies [Daudé, 2005].
A Labeling Problem is defined by a set of variables (or units) Vi, a set of labels

(domain) for each variable Di, a compatibility relation over tuples. Compatibilities
are real-value functions rij : DxD −→ < where ri,j(a, b) refers to the compatibility
of the simultaneous assignment of a to Vi and b to Vj.

A labelling is a weighted assignment of labels to variables. More than one
label can be assigned to the same variable, provided that the sum of he weights
for each variable is 1. In a similar way than csp aims to find total assignments

1http://www.itri.brighton.ac.uk/projects/iconoclast
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where constraints are not violated, clp looks for labelling where variables are highly
compatible with respect to compatibility functions.

A.2 Algorithms to solve clp

Consistent Labeling Problems (clp) can be solved via Relaxation Labeling. Relax-
ation labeling is a generic name for a family of iterative algorithms which perform
function optimization, based on local information. The algorithm finds a combi-
nation of values for a set of variables such that satisfies -to a maximum possible
degree- a set of given constraints. This formulation allow to naturally integrate dif-
ferent kinds of knowledge coming from different sources (linguistic and statistical),
which may be partial, partially incorrect or even inconsistent.

In this section the relaxation algorithm is described from a general point of view.

Let V = {v1, v2, . . . , vn} be a set of variables.

Let Ti = {ti1, ti2, . . . , timi
} be the set of possible labels for variable vi (where

mi is the number of different labels that are possible for vi).

Let C be a set of constraints between the labels of the variables. Each con-
straint r has the form:

Cr [(vr1, tr1k1), (vr2 , tr2k2), . . . , (vrdr
, trdrkdr

)]

That is, each constraint is a combination of pairs (variable,label) associated to
a real value Cr expressing compatibility. For instance, the constraint [v1 = A]
∼0.53 [v3 = B] states that the combination of variable v1 having label A, and
variable v3 having label B has a compatibility value of 0.53. Constraints can
be of any order dr, so we can define the compatibility value for combinations
of any number of pairs (variable,label). Obviously, we can have combinations
of at most n variables.

The aim of the algorithm is to find a weighted labeling such that global consistency
is maximized. A weighted labeling is a weight assignment for each possible label of
each variable:

P̄ = (P1, P2, . . . , Pn) where each Pi is a vector containing a weight for each
possible label of vi, that is: Pi = (pi1, pi2, . . . , pimi

), being pij the weight for
label tij.

Maximizing global consistency is defined as maximizing the average support that
each variable labeling receives from the others. The goal is selecting a weight distri-
bution such that the labeling is consistent –to the maximum possible extent– with
the compatibilities expressed by the constraint set.

Also, we need to define:
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Rij is the set of constraints on label tij for variable vi, i.e. the constraints
formed by any combination of variable–label pairs that includes the pair
(vi, tij).

Inf(r, i, j) = Cr × pr1k1(s) × . . . × prdr kdr
(s), is the influence of constraint r

on label tij, computed as the product of the current weights (at time step
s) for the labels appearing in the constraint except (vi, tij) (representing how
applicable the constraint is in the current context) multiplied by Cr which is
the constraint compatibility value (stating how compatible the pair is with the
context).

Sij is the support received by the pair (vi, tij) from the context. The support
for a pair variable–label (Sij) expresses how compatible is the assignment of
label tij to variable vi with the labels of neighboring variables, according to
the constraint set.

Although several support functions may be used, we chose the following one,
which defines the support as the sum of the influence of every constraint on a
label, following the results of [Padró, 1998],

Sij =
∑

r∈Rij

Inf(r, i, j)

After these definitions, we can define more formally that maximizing global con-
sistency consists of maximizing, for each vi, the weighted sum of the support received
by each of its possible labels, that is:

mi
∑

j=1

pij × Sij ∀i (1 ≤ i ≤ n)

The pseudo-code for the relaxation labeling algorithm can be found in Figure 4.
It consists of the following steps (step numbers refer to pseudo-code) :

(1) start in a initial labeling (random or heuristically chosen) P̄0.

(4-6) for each variable, compute the support Sij that each label receives from the
current weights for the labels of the other variables (i.e. see how compatible is
the current weighting with the current state of the other variables, given the
set of constraints).

(7-9) Compute weight for each variable label at time step s + 1 according to the
support they receive (that is, increase weight for labels with high support,
and decrease weight for those with low support). Although there are several
possibilities [1998; 1989], the chosen updating function in our case was the
following:

pij(s + 1) =
pij(s)× (1 + Sij)

mi
∑

k=1

pik(s)× (1 + Sik)



172 Consistent Labeling Problems and Relaxation Labeling

(11) iterate the process until a convergence criterion is met. The usual criterion is
waiting until there are no significant changes.

Algorithm 4 Pseudo code of the relaxation labeling algorithm.

P ← P̄0

s← 0
repeat

for each variable vi do
for each tij do

Sij ←
∑

r∈Rij

Inf(r, i, j)

end for
end for

until no more changes

Advantages of the algorithm are:

• Its highly local character (each variable can compute its new label weights
given only the state at previous time step). This makes the algorithm highly
parallelizable (we could have a processor to compute the new label weights for
each variable, or even a processor to compute the weight for each label of each
variable).

• Its expressivity: The problem is stated in terms of constraints between variable
labels.

• Its flexibility: We do not have to check absolute consistency of constraints.

• Its robustness: It can give an answer to problems without an exact solution
(incompatible constraints, insufficient data, . . . )

Drawbacks of the algorithm are:

• Its cost. Being n the number of variables, v the average number of possible
labels per variable, c the average number of constraints per label, and I the
average number of iterations until convergence, the average cost is n×v×c×I,
that is, it depends linearly on n, but for a problem with many labels and
constraints, or if convergence is not quickly achieved, the multiplying terms
might be much bigger than n.

• Since it acts as an approximation of gradient step algorithms, it has their
typical convergence problems: Found optima are local, and convergence is
not guaranteed, since the chosen step might be too large for the function to
optimize.



APPENDIX B.

Integration Example

As the biggest library if it is in disorder is not as useful as a small but well-arranged one,

so you may accumulate a vast amount of knowledge but it will be of far less value to you

than a much smaller amount if you have not thought it over for yourself.

Arthur Schopenhauer

In order to show the complexity of this integration, we will gather the different
pieces of information that could be associated to the sentence “The cat eats fish”
on some of the most broadly used resources in nlp, WordNet, VerbNet, FrameNet,
sumo and MultiWordNet Domains.

WordNet has a wide coverage for English and contains a huge amount of im-
plicit and explicit semantic information (e.g. semantic relations such: hyperonym,
meronymy, antonomy, entailment, etc). However, It has poor information about
the syntax behavior. Other extensions of WordNet, could also bring other types of
information, e.g. eXtended WordNet1 [Mihalcea and Moldovan, 2001], [Harabagiu
and Maiorano, 1999] could be used to explicitate indirect relations between concepts
(lexical chaining).

Princeton WordNet1.6 contains different senses for the verb eat (see Figure B.1),
but also for the nouns cat (see Figure B) and fish (See Figure B.3). Each sense is
defined by a set of synonyms (named variants) and also contains a gloss. Apart
from the different sense distinction that can be associated to a word, WordNet
also contains semantic relations with other concepts, furthermore that hyperonym
relations, for instance entailment or holonomy, see figure B.

Although WordNet is not an ontology and inference over WordNet is not sound,
some relation can be carefully inherited, for instance see figure B.2 showing the
inherited parts of fish 1 according the Princeton WordNet interface.

1http://xwn.hlt.utdallas.edu/
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Variants Gloss
eat 1 take in solid food: She was eating a banana;
eat 2 eat a meal; take a meal: We did not eat until 10 P.M.

because there were so many phone calls;
eat 3, feed 6 take in food; used of animals only: This dog doesn’t eat

certain kinds of meat; What do whales eat?;
eat 4 consume 5 eat up 2
use up 1 deplete 1 exhaust 2
run through 2 wipe out 1

use up, as of resources or materials: this car consumes a
lot of gas; We exhausted our savings; They run through
20 bottles of wine a week;

eat 5 eat on 1 worry or cause anxiety in a persistent way: What’s eat-
ing you?;

eat 6 corrode 1 rust 2 cause to rust: The acid corroded the metal;

Table B.1: The verb “eat” in WordNet1.6

Variants Gloss
cat 1 true cat 1 feline mammal usually having thick soft fur and being

unable to roar; domestic cats; wildcats
cat 2 guy 1 hombre 1 an informal term for a youth or man: a nice guy; the

guy’s only doing it for some doll;
cat 3 a spiteful woman gossip: what a cat she is!;
cat 4 cat-o’-nine-tails 1 a whip with nine knotted cords: British sailors feared

the cat;
cat 5 Caterpillar 2 a tractor that is driven by caterpillar tracks
cat 6 big cat 1 any of several large cats typically able to roar and living

in the wild

Table B.2: The noun “cat” in WordNet1.6

Variants Gloss
fish 1 any of various mostly cold-blooded aquatic vertebrates

usually having scales and breathing through gills
fish 2 the flesh of fish used as food
fish 3 chump 1 fool 2 gull 1
mark 8 patsy 1 fall guy 1
sucker 1 schlemiel 1 shlemiel 1
soft touch 1 mug 2

a person who is gullible and easy to take advantage of

fish 4 go fish 1 a game for two players who try to assemble books of
cards by asking the opponent for particular cards

Table B.3: The noun “fish” in WordNet1.6
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eat_1 -- (take in solid food)

ENTAILS; chew, masticate, manducate, jaw

ENTAILS: swallow, get down

cat_5 -- ((trademark) a tractor that is driven by caterpillar tracks)

HAS PART: caterpillar tread, caterpillar tracks

=> tractor

=> vehicle

HAS PART: splashboard, dashboard

cat_6 -- (any of several large cats typically able to roar and living in the wild)

MEMBER OF: Felidae, family Felidae

MEMBER OF: Carnivora, order Carnivora

MEMBER OF: Eutheria, subclass Eutheria

MEMBER OF: Mammalia, class Mammalia

MEMBER OF: Vertebrata, subphylum Vertebrata, Craniata

MEMBER OF: Chordata, phylum Chordata

MEMBER OF: Animalia, kingdom Animalia, animal kingdom

Figure B.1: Example of WordNet relations
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Sense 1 fish -- (any of various mostly cold-blooded aquatic vertebrates

usually having scales and breathing through gills)

HAS PART: fish scale

HAS PART: roe

HAS PART: milt

HAS PART: lateral line, lateral line organ

HAS PART: fin

HAS PART: ray

HAS PART: tail fin, caudal fin

HAS PART: fishbone

=> aquatic vertebrate

HAS PART: flipper

=> vertebrate, craniate

HAS PART: belly

HAS PART: tail

HAS PART: dock

HAS PART: caudal appendage

HAS PART: rib, costa

HAS PART: costal cartilage

HAS PART: thorax, chest, pectus

HAS PART: sternum, breastbone

HAS PART: gladiolus, corpus sternum

HAS PART: manubrium

HAS PART: thoracic aorta

HAS PART: thoracic vein, vena thoracica

HAS PART: gallbladder

HAS PART: area of cardiac dullness

HAS PART: pectoral, pectoral muscle, pectoralis, musculus pectoralis

HAS PART: chest cavity, thoracic cavity

HAS PART: mediastinum

HAS PART: breast

HAS PART: rib cage

HAS PART: vertebrate foot, pedal extremity

HAS PART: metatarsus

Figure B.2: Inherited parts of fish 1 according to Wn1.6
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FrameNet provides the knowledge needed to identify case frames and semantic
roles. FrameNet has a completely different semantic view (Frame Semantics) and
contains a rich information about the semantics components of the predicate as well
as their syntactic realizations. Frames are associated to Lexical Units (See table
B.4). However, it has poor lexical coverage compared to WordNet. There is no
frame directly associated to cat and and it only associates one frame for all the
senses of eat (Ingestion Process) and fish (Food). Although, as FrameNet has a
corpus associated, it also contains frame elements occurrences in different syntactic
patterns (valences) (See table B.5).

Frame Ingestion
Definition An Ingestor consumes food, drink, or smoke (In-

gestibles). This may include the use of an Instrument.
Sentences that describe the provision of food to others
are NOT included in this frame.

FEs
Core

Ingestibles [Ingible] The Ingestibles are the entities that are being consumed
by the Ingestor.

Ingestor [Ing] The Ingestor is the person eating, drinking, or smoking.

Uses Cause motion, Intentionally affect
Lexical Units breakfast.v, consume.v, devour.v, dine.v, down.v,

drink.v, eat.v, feast.v, feed.v, gobble.v, gulp.n, gulp.v,
guzzle.v, have.v, imbibe.v, ingest.v, lap.v, lunch.v,
munch.v, nibble.v, nosh.v, nurse.v, quaff.v, sip.n, sip.v,
slurp.n, slurp.v, snack.v, sup.v, swig.n, swig.v, swill.v

Frame Element Number Annotated Realizations(s)
Ingestibles 26 NP.Ext 4

NP.Obj 17
–.– 5

Ingestor 26 NP.Ext 21
–.– 2
PP[by].Comp 3

Table B.4: FrameNet Frames for “Ingest”
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Number Annotated Patterns
26 TOTAL Ingestibles Ingestor
5 – NP

– Ext
1 NP –

Ext –
3 NP PP[by]

Ext Comp
1 NP –

Obj –
16 NP NP

Obj Ext

Table B.5: Valences from Frame “Ingest”
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Roles
role name selres

Agent value= + type= animate
Instrument value= + type= concrete

Patient value= + type= comestible

Figure B.3: Roles for VerbNet Class for eat-39.1

VerbNet is a verb lexicon with explicit syntactic and semantic information
based on Levin’s verb classification. In VerbNet the arguments of the verb are rep-
resented at semantic level and thus they have associated semantic roles. In [Giuglea
and Moschitti, 2004], VerbNet has been used to relate FrameNet and syntactic argu-
ment annotated in PropBank (a 300.000 word corpus from the Wall Street Journal
annotated with predicate-arguments relations using VerbNet).

Following our example, VerbNet relates all the different senses of the verb eat
to the same verbal class (eat-39.1). VerbNet includes information about semantic
roles, selectional preferences, the possible diathesis alternation of a verb (See Figure
B.4). It can be argued that the Selectional Preferences does not hold for some of
the WordNet senses of eat. (e.g. eat 5 (eat on) and eat 6 (cause to rust).)

On the other hand, comparing with FrameNet, which assigns only
two FE (Ingestor, Ingestible), VerbNet explicitates three different roles
(Agent/Patient/Instrument). Moreover, VerbNet also explicitates 4 different sub-
categorization frames for eat: NP VERB NP, (transitive) NP VERB (unspecified
object alternation), NP VERB PP(at) (conative) and NP VERB NP ADJ (re-
sultative), while the valences present in the FrameNet corpus (see figure B.5) are
not exactly the same NP VERB NP, NP VERB, VERB NP, NP VERB
PP(by).

Some of this differences are due to the different paradigm (the syntactic informa-
tion in FrameNet comes from a representative corpus while in VerbNet the syntactic
information explicitly encoded and theoretically ground), the use of different criteria
(e.g. like the explicitation of the passive) but in most cases there are codifying com-
plementary information (alternations NP VERB NP ADJ or VERB NP) or related
information (roles vs Frame elements).

LCS: A database of Lexical conceptual Structures was built by hand by Dorr in
1994, organized into semantic classes that are a reformulated version of those in Beth
Levin English Verb Classes and Alternations [Levin, 1993]. Figure B.5 shows the two
LCS entries associated to the verb eat. These structures also contains information
about Roles and PropBank arguments. Moreover, each entries is associated to one
or more WordNet sense. For instance, in the example, the first one is associate to
the senses eat 2 and eat 3 while the second is associated to the first sense. Also
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frame 276
desNum 0.2
primary Basic Transitive

syntax

tag value SEL SYN
NP Agent

VERB
NP Patient

examples Cynthia ate the peach

frame 277
desNum 1.2.1
primary Unspecified Object Alternation

syntax

tag value SEL SYN
NP Agent

VERB

example Cynthia ate

frame 278
desNum 1.3
primary Conative

syntax

tag value SEL SYN
NP Agent

VERB
PREP at

NP Patient

example Cynthia ate at the peach

frame 279
desNum 0.4
primary Resultative

syntax

tag value SEL SYN
NP Agent

VERB
NP Oblique
ADJ

example Cynthia ate herself sick

Figure B.4: The four frames of VerbNet Class for eat-39.1

notice that there is not information for the rest of the WordNet senses.
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(

:DEF_WORD "eat"

:CLASS "39.1.i"

:SOURCES (LEVIN)

:WN_SENSE (("1.5" 00663538 00662381 00670058)

("1.6" 00802008 00793267 00802008)

("1.7.1" 00932129 00921744 00932129)

("2.0" 01143746 01130349 01143746))

:PROPBANK ("arg0")

:THETA_ROLES ((1 "_ag"))

:LCS (act loc (* thing 1) (eat+ingly 26))

:VAR_SPEC ((1 (animate +)))

)

(

:DEF_WORD "eat"

:CLASS "39.1.ii"

:SOURCES (LEVIN)

:WN_SENSE (("1.5" --)

("1.6" 00794578)

("1.7.1" 00923270)

("2.0" 01132466))

:PROPBANK ("arg0 arg1")

:THETA_ROLES ((1 "_ag_th"))

:LCS (cause (* thing 1)

(go loc (* thing 2)

(toward loc (thing 2) (in loc (thing 2) (thing 1))))

(eat+ingly 26))

:VAR_SPEC ((1 (animate +)) (2 (mass +)))

)

Figure B.5: Two LCS entries associated to the verb eat
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Sumo (Suggested Upper Merged Ontology)[Niles and Pease, 2001] is an upper
level ontology created as part of the IEEE Standard Upper Ontology Working Group.
sumo consists of a set of concepts, relations, and axioms that formalize a field
of interest. Figure B.6 shows the axioms related to the Eating concept, the first
one staying that “if instance ACT Eating and patient ACT FOOD, then attribute
FOOD Solid”, and the second staying that “if instance CARNIVORE Carnivore
and instance EAT Eating and agent EAT CARNIVORE and patient EAT PREY,
then instance PREY Animal”. Although cat is not represented directly, it is related
to the sumo concept Feline (See Figure B.7).

SUMO has been connected to WordNet, thus we can see how the different word-
net senses are represented according to sumo. The WordNet senses of the verb eat
are basically divided in Eating (3 senses), Process (1 sense) IntentionalPsychologi-
calProcess (1 sense) and ChemicalSynthesis (1 sense).

Eating "The Process by which solid Food is incorporated into an Animal."

(subclass Eating Ingesting)

(=>

(and

(instance ?ACT Eating)

(patient ?ACT ?FOOD))

(attribute ?FOOD Solid))

(=>

(and

(instance ?CARNIVORE Carnivore)

(instance ?EAT Eating)

(agent ?EAT ?CARNIVORE)

(patient ?EAT ?PREY))

(instance ?PREY Animal))

Figure B.6: sumo Eating
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Feline: "The Class of Carnivores with completely separable toes,

nonretractable claws, slim bodies, and rounded heads."

(subclass Feline Carnivore)

appearance as argument number 2

(disjoint Canine Feline)

Figure B.7: sumo Feline
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TCO: The EuroWordNet Top Concept Ontology [Vossen, 1998] is a hierarchy
of language-independent concepts, reflecting important semantic distinctions, e.g.
Object and Substance, Location, Dynamic. As shown in figures B.8, each sense
could have multiple properties associated and the resulting representation is sounded
and richer than the WordNet Lexicographer File (LF). It is interesting to highlight
that eat 2 and eat 3 share exactly the same set of properties. While eat 5 and eat 6
do not share almost any property with the rest of the senses.

Sense TCO MW Domains SUMO LF

eat 1

Agentive=
Dynamic=
Location=
Physical=
Purpose=

UnboundedEvent+
Usage=

gastronomy Eating+ consumption

eat 2

Location+
Physical+
Purpose+

UnboundedEvent+
Usage+

gastronomy Eating= consumption

eat 3

Location+
Physical+
Purpose+

UnboundedEvent+
Usage+

gastronomy, zoology Eating+ consumption

eat 4

Agentive+
BoundedEvent+

Possession+
Purpose+
Social+

factotum Process+ consumption

eat 5
Dynamic+

Experience+
Mental+

psychology IntentionalPsychologicalProcess+ emotion

eat 6

BoundedEvent+
Cause+

Condition+
Dynamic+
Physical+

chemistry ChemicalSynthesis+ change

Figure B.8: tco, MW Domains, sumo and LF for the verb eat

MultiWordNet Domains is a hierarchy of domain labels, which are knowledge
structures grouping meanings in terms of topics or scripts, e.g. Transport, Sports,
Medicine, Gastronomy. As show in figure B.8, It could also bring up a new orthog-
onal view over the different senses of eat: gastronomy (2 senses), gastronomy and
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Sense TCO MW Domains SUMO LF

cat 1
Animal+
Living+
Object+

zoology Feline+ animal

cat 2

Function+
Human+
Living+
Object+

person Male+ person

cat 3

Function+
Human+
Living+
Object+

person Female+ person

cat 4
Artifact+

Instrument+
Object+

factotum Device+ artifact

cat 5

Artifact+
Instrument+

Object+
Vehicle+

transport TransportationDevice+ artifact

cat 6
Animal+
Living+
Object+

zoology Feline+ animal

Figure B.9: tco, MW Domains, sumo and LF for the noun cat

Zoology (1 sense), economy (1 sense), psychology (1 sense) and chemistry (1 sense).
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As it can be seen in the example, each resource seems to have a partial view of
the complete information. Moreover, although some of them are representing similar
things from similar point of view, the information provided seems complementary
but it does not fit completely. Putting all this resources together can give us a more
completed view of the semantic and syntactic behavior of the different elements
involved in the sentence to build an appropriate interpretation. Although, the use of
different kinds of knowledge coming from different sources (linguistic and statistical)
could be inconsistent when used together, this alternative is more realistic than
expecting a single resource to coupe with all the language phenomena.

The integration of these different theories or pieces of knowledge can be car-
ried in an integrated model (as in the Microtheories in Mikrokosmos). Thus, this
integration of knowledge must be carried out in a flexible framework which allows
knowledge to be incomplete, partially incorrect or even inconsistent (such as Con-
straint Satisfaction Techniques).



APPENDIX C.

MCR Examples

When uploading coherently all this knowledge into the Multilingual Central Reposi-
tory (mcr) a full range of new possibilities appear for improving both srl and wsd

problems (and other Semantic Processes). We will illustrate these new capabilities
by two simple examples.

C.1 The “Vaso” Example

The Spanish noun vaso has three possible senses. The first one is connected to the
same ILI as the English synset <drinking glass glass>. This Ili record, belong-
ing to the Semantic File artifact has no specific WordNet Domain (factotum.
However, the Top Concept Ontology provides further clues about its meaning: it
has the following properties Form-Object, Origin-Artifact, Function-Container and
Function-Instrument. The sumo type for this synset is also artifact. A valuable
information also comes from the disambiguated glosses included into the eXtended
WordNet. This gloss has two ‘silver’ words1 (glass, container) and three ‘normal’
words (the rest). For instance, hold#VBG#8 corresponds to: contain or hold”; have
within: “The jar carries wine”; “The canteen holds fresh water”; “This can contains
water”. Further, coming from the Selectional Preferences acquired from SemCor,
we know that the typical things that somebody does with this kind of vaso are for
instance the corresponding equivalent translations to Spanish for <polish, shine,
smooth, smoothen> or <beautify, embellish, prettify>. WordNet 2.0 also provides a
new morphological derivational relation: to glass#v#4 “put in a glass container”.
Finally, we must add that this also holds for the rest of languages connected.

vaso_1 02755829-n

LF: 06-NOUN.ARTIFACT

DOMAIN: FACTOTUM

1High confidence
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SUMO: &%Artifact+

TO: 1stOrderEntity-Form-Object

TO: 1stOrderEntity-Origin-Artifact

TO: 1stOrderEntity-Function-Container

TO: 1stOrderEntity-Function-Instrument

EN: drinking_glass glass

IT: bicchiere

BA: edontzi baso edalontzi

CA: got vas

02755829-n drinking_glass glass:

GLOSS: a glass container for holding liquids while drinking

eXtended WordNet:

GLOSS: a glass#NN#2 container#NN#1 for hold#VBG#8 liquid#NNS#1 while drink#VBG#1

DOBJ SemCor

02755829 00849393-v 0.0074 polish shine smooth smoothen

02755829 00201878-v 0.0013 beautify embellish prettify

02755829 00826635-v 0.0010 get_hold_of take

02755829 00140937-v 0.0001 ameliorate amend better improve meliorate

02755829 00083947-v 0.0000 alter change

DOBJ Semcor-No Generalization

02755829 00826635-v get_hold_of take

02755829 00849393-v polish shine smooth smoothen

02755829 01526289-v pass hand reach pass_on turn_over give

02755829 01571054-v offer proffer

Proto-Classes

hear dobj 02755829 0.0003165225

turn dobj 02755829 0.0011137408

bear dobj 02755829 0.0011655012

send dobj 02755829 0.0005092687

lift dobj 02755829 0.0143220878

roll dobj 02755829 0.0056179775

find subj 02755829 6.85143e-05

like subj 02755829 0.0003032475

WN2.0
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RELATED TO: glass#v#4 (put in a glass container)

The second sense of vaso is the equivalent translation of <vessel, vas>. This
Ili record, belonging to the Semantic File body has assigned a different WordNet
Domain (anatomy). The EuroWordNet Top Ontology in this case, has the follow-
ing properties Form-Substance-Solid, Origin-Natural-Living, Composition-Part and
Function-Container. The sumo label provides the properties and axioms assigned
to BodyVessel. This gloss has two ‘gold’ words2 (tube and circulate) and one ‘silver’
(body fluid) and the last word is monosemous. From the Selectional Preferences
acquired from SemCor, we know that the typical events applied to this king of vaso
are for instance the corresponding equivalent translations to Spanish for <inject,
shoot> or <administer, dispense>. In this case, there are no new relations coming
from WordNet 2.0. As before, we must add that this knowledge can be also ported
to the rest of languages integrated into the mcr.

vaso_2 04195626-n

LF: 08-NOUN.BODY

DOMAIN: ANATOMY

{SUMO: &%BodyVessel+

TO: 1stOrderEntity-Form-Substance-Solid

TO: 1stOrderEntity-Origin-Natural-Living

TO: 1stOrderEntity-Composition-Part

TO: 1stOrderEntity-Function-Container

EN: vessel vas

IT: vaso dotto canale

BA: hodi baso

CA: vas

04195626-n vessel vas:

GLOSS: a tube in which a body fluid circulates

eXtended WordNet:

GLOSS: a tube#NN#4 in which a body_fluid#NN#1 circulate#VBZ#4

DOBJ SemCor

04195626 01781222 0.0334 be occur

04195626 00058757 0.0072 inject shoot

04195626 01357963 0.0068 follow travel_along

2Hand corrected
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04195626 00055849 0.0045 administer dispense

04195626 01012352 0.0022 block close_up impede jam obstruct occlude

04195626 00054862 0.0021 care_for treat

04195626 01670590 0.0017 hinder impede

04195626 00401762 0.0011 cognize know

04195626 01253107 0.0005 go locomote move travel

04195626 01669882 0.0003 keep prevent

DOBJ SemCor No-Generalization

04195626 01357963 follow travel_along

04195626 01781222 be occur

SUBJ SemCor

04195626 01831830 0.0133 stop terminate

04195626 01357963 0.0127 floow travel_along

04195626 01830886 0.0043 discontinue

04195626 01779664 0.0008 cease end finish terminate

04195626 01832078 0.0003 continue go_along go_on keep keep_on proceed

04195626 01253107 0.0002 go locomote move travel

04195626 01520167 0.0002 transfer

04195626 01505951 0.0002 give

04195626 01590833 0.0002 furnish provide render supply

04195626 01612822 0.0001 act move

04195626 01775973 0.0000 be

Proto-Classes

open dobj 04195626 0.0006462453

show subj 04195626 0.0001756852

The last sense of vaso is the equivalent translation of <glassful, glass>. This ILI
record, belongs to the Semantic File quantity and has assigned a different WordNet
Domain (factotum-number). The Top Concept Ontology in this case, has the fol-
lowing properties Composition-Part, SituationType-Static and SituationComponent-
Quantity. The sumo label provides the properties and axioms assigned to Con-
stantQuantity. This gloss has only one ’silver’ word from the eXtended WordNet
(quantity). The other two have label ‘normal’. From the Selectional Preferences
acquired from SemCor, we know that the typical events applied to this king of vaso
are for instance the corresponding equivalent translations to Spanish for <drink, im-
bibe> or <consume, have, ingest take, take in>. WordNet 2.0 also provides a new
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morphological derivational relation: to glass#v#4 “put in a glass container”. As
before, we must add that this knowledge can be also ported to the rest of languages
connected.

vaso_3 09914390-n

LF: 23-NOUN.QUANTITY

DOMAIN: NUMBER

SUMO: &%ConstantQuantity+

TO: 1stOrderEntity-Composition-Part

TO: 2ndOrderEntity-SituationType-Static

TO: 2ndOrderEntity-SituationComponent-Quantity

EN: glassful glass

IT: bicchierata bicchiere

BA: basocada

CA: got vas

09914390-n glassful glass:

GLOSS: the quantity a glass will hold

eXtended WordNet:

GLOSS: the quantity#NN#1 a glass#NN#2 will hold#VB#1

DOBJ SemCor

09914390 00795711 0.0026 drink imbibe

09914390 01530096 0.0009 accept have take

09914390 00786286 0.0009 consume have ingest take take_in

09914390 01513874 0.0001 acquire get

DOBJ Semcor No generalization

09914390 00795711 drink imbibe

09914390 01530096 accept have take

As we can see, we can add consistently a large set of explicit knowledge about
each sense of vaso that can be used to differentiate and characterize better their
particular meanings. We expect to devise appropriate ways to exploit this unique
resource in the future.
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C.2 The “Pasta” Example

We will continue illustrating the current content of the mcr, after porting, with
another simple example: the Spanish noun pasta.

The word pasta (see tables C.2 and C.1) illustrates how all the different clas-
sification schemes uploaded into the mcr: Lexicographer File, WordNet Domain,
Top Concept Ontology, etc. are consistent and makes clear semantic distinctions
between the money sense (pasta 6 ), the general/chemistry sense (pasta 7 ) and the
food senses (all the rest). The food senses of Pasta can now be further differen-
tiate by means of explicit Top Concept Ontology properties. All the food senses
are descendants of substance 1 and food 1 and inherits the Top Concept attributes
Substance and Comestible respectively.

Domain: chemistry-pure science
LF: 27-Substance
SUMO:
Substance-SelfConnectedObject-
Object-Physical-Entity

Top Concept ontology
Natural-Origin-1stOrderEntity
Substance-Form-1stOrderEntity

pasta#n#7 10541786-n
paste#1
gloss: any mixture of a soft
and malleable consistency

Domain: money-economy-soc.science
LF: 21-Money
SUMO:
CurrencyMeasure-ConstantQuantity-
PhysicalQuantity-Quantity-Abstract-
Entity
Top Concept ontology
Artifact-Origin-1stOrderEntity
Function-1stOrderEntity
MoneyRepresentation-Representation-
Function-1stOrderEntity

pasta#n#6 09640280-n
dough#2,bread#2,loot#2, ...
gloss: informal terms for money

Table C.1: Food senses for the Spanish word pasta

Selectional Preferences can also help to distinguish between senses, e.g only the
money sense has the following preferences as object: 1.44 01576902-v {raise#4},
0.45 01518840-v {take in#5, collect#2} or 0.23 01565625-v {earn#2, garner#1} or
0.12 01564908-v {clear#15, take in#10, make#10, gain#8, realize#4, pull in#2,
bring in#2, earn#1}.

Table C.3 presents the new selectional preferences acquired for the Spanish word
Pasta. That is, the prototypical verbs associated to each English equivalent trans-
lation or their hypernyms.

We can also investigate new inference facilities to enhance the integration process.
After full expansion (Realization) of the Ewn Top Concept ontology properties,
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Domain: gastronomy-alimentation-applied science
LF: 13-food
Top concept ontology
Comestible-Function-1stOrderEntity
Substance-Form-1stOrderEntity

Top Concept ontology
Natural-Origin-1stOrderEntity

Top Concept ontology
Part-composition-
1stOrderEntity
pasta#n#4 05886080-n
spread#5,paste#3
gloss: a tasty mixture to be
spread on bread or crackers

pasta#n#1 05671312-n
pastry#1,pastry dough#1
gloss: a dough of flour and
water and shortening
pasta#n#3 05739733-n
pasta#1,alimentary paste#1
gloss: shaped and dried
dough made from flour and
water & sometimes egg

pasta#n#5 05889686-n
dough#1
gloss: a dough of flour and
water and shortenings

Top Concept ontology
Artifact-Origin-
1stOrderEntity
Group-Composition-
1stOrderEntity

pasta#n#2 05671439-n
pie crust#1,pie shell#1
gloss: pastry used to hold pie
fillings

Table C.2: Food senses for the Spanish word pasta

we will perform a full expansion through the noun part of the hierarchy of the
selectional preferences acquired from SemCor and BNC (and possibly other implicit
semantic knowledge currently available in Wn such as meronymy information).
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pasta#n#1 hyper2 05909338 divide 0,0127 wrap 0,0063 pack 0,0045 mix 0,0044
press 0,0025 check 0,0013 pass 0,0007 add 0,0006
eat 0,0006 make 0,0005 prevent 0,0004 remove
0,0004 produce 0,0002 leave 0,0001 like 0,0001

pasta#n#2 hyper-1 05670938 eat 0,0017 serve 0,0012 choose 0,0007 include
0,0002 leave 0,0002 take 0,0001

hyper-2 05670374 dispense 0,0161 crush 0,0137 pop 0,0120 eat 0,0103
bless 0,0102 chew 0,0095 put out 0,0064 tuck
0,0058 freeze 0,0050 clutch 0,0048 transfer 0,0015
fill 0,0014 try 0,0013 avoid 0,0006 buy 0,0006 in-
clude 0,0001 make 0,0001

pasta#n#3 direct divide 0,0127 wrap 0,0063 pack 0,0045 mix 0,0044
press 0,0025 check 0,0013 pass 0,0007 add 0,0006
eat 0,0006 make 0,0005 prevent 0,0004 remove
0,0004 produce 0,0002 leave 0,0001 like 0,0001

pasta#n#4 direct mix 0,0065 add 0,0004
hyper-1 05844302 mix 0,0142 picture 0,0097 spread 0,0046 accom-

pany 0,0017 serve 0,0016 hate 0,0013 prepare
0,0013 pass 0,0007 do 0,0005 keep 0,0005 include
0,0004 love 0,0004 like 0,0003 hold 0,0002 make
0,0001 produce 0,0001

pasta#n#5 hyper-1 105909338 divide 0,0127 wrap 0,0063 pack 0,0045 mix 0,0044
press 0,0025 check 0,0013 pass 0,0007 add 0,0006
eat 0,0006 make 0,0005 prevent 0,0004 remove
0,0004 produce 0,0002 leave 0,0001 like 0,0001

Table C.3: New Selectional Preferences for Food senses of “pasta”
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Lexicographer File - Top Concept Ontology

LF TCO

04 Agentive

05 Animal

06 Artifact

07 Property

08 Object
Natural

09 Mental

10 Communication

11 Dynamic

12 Experience

13 Comestible

14 Group

15 Place

16 3rdOrderEntity

17 Object

18 Human

19 Phenomenal

20 Plant

21 Possession

22 Dynamic

LF TCO

23 Quantity

24 Relation

25 Physical

26 Static

27 Substance

28 Time

29 Dynamic
Physical

30 Dynamic

31 Mental
Dynamic

32 Communication
Dynamic

33 Social
Dynamic

34 Physical
Location
Dynamic

35 Location
Dynamic

LF TCO

36 Existence
BoundedEvent

37 Experience
Mental

38 Location
Physical
Dynamic

39 Experience
Physical
Dynamic

40 Possession
Dynamic

41 Social
Dynamic

42 Static

43 Phenomenal
Physical
Dynamic

Table D.1: LF -TCO Equivalences
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APPENDIX E.

Senseval-II issues

The Senseval-IIEnglish Lexical Sample task contains several inconsistences. First
the misspelling of some WordNet variants (shown in table E.1) and secondly MWEs
variants in the test solutions which are not lexicalized in the input text and last but
not least, variants which appear in the test corpus but do not appear in the training
(shown in tables E.3 and E.4).

Senseval Variant Correct WordNet Variant
keep one-s nose to the grindstone%2:41:00:: keep one’s nose to the grindstone%2:41:00::
keep one-s distance%2:42:00:: keep one’s distance%2:42:00::
pull in one-s horns%2:32:00: pull in one’s horns%2:32:00:
pull the wool over someone-s eyes%2:32:00:: pull the wool over someone’s eyes%2:32:00::
wash one-s hands%2:32:00::’ wash one’s hands%2:32:00::
free will%1:26:00:: free will%1:07:00::
natural language processing%1:10:00:: natural language processing%1:09:00::
local post office%1:14:01:: local post office%1:14:01::
vital%5:00:00:alive(p):01 vital%5:00:00:alive:01

Table E.1: Non exisiting variants and their correct form

draw.048 draw in%2:35:00::
dress.068 dress up%2:36:00::
dress.115 dress up%2:36:00::
dress.128 dress up%2:36:00::
live.169 live on%2:42:00::

Table E.2: MWE variant which are not in the text
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Word Variant
art art critic#n#1
art art exhibition#n#1
art art#n#4
art pop art#n#1

authority regulatory authority#n#1

bar candy bar#n#1
bar sushi bar#n#1

begin begin#v#8

carry carry off#v#1

carry carry on#v#3
carry carry over#v#1
carry carry#v#17
carry carry#v#19
carry carry#v#8

chair bath chair#n#1
chair feeding chair#n#1
chair musical chairs#n#1

channel television channel#n#1

circuit computer circuit#n#1

day order of the day#n#1

detention house of detention#n#1

develop develop#v#15

draw draw close#v#2
draw draw in#v#2
draw draw in#v#3
draw draw in#v#4
draw draw in#v#7
draw draw out#v#3
draw draw up#v#5

drift drift away#v#1

drive drive around#v#2

facility docking facility#n#1

facility health facility#n#1

fatigue battle fatigue#n#1
feeling feeling#n#6

find find out#v#1
find find#v#14
fine fine print#n#2

free free rein#n#1
free free trader#n#1

Table E.3: Senses which appears on the test corpus but not on the training I
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Word Variant
green green#a#7
green green woodpecker#n#1
green yellowish green#n#1
grip grip#n#5

keep keep going#v#3
keep keep off#v#2
keep keep out#v#1
keep keep up#v#3
keep keep up#v#5

leave leave#v#14

local local government#n#1

mouth mouth#n#7

nation balkan nation#n#1

natural natural ability#n#1
natural natural resource#n#1
natural natural theology#n#1

play play off#v#1
play play possum#v#1
play play#v#12
play play#v#33

pull pull off#v#2
pull pull the plug#v#1
pull pull up short#v#1

see see#v#10

sense sense of smell#n#1
sense sense organ#n#1

serve serve#v#5

strike strike home#v#1
strike strike#v#14
strike strike#v#19

turn turn away#v#4
turn turn in#v#3
turn turn off#v#1
turn turn#v#26

wander wander#v#2

wash wash up#v#2

work work at#v#1
work work up#v#1
work work up#v#2
work work#v#24

yew western yew#n#1

Table E.4: Senses which appears on the test corpus but not on the training II


